
beSTORM
UAC USB Peripheral
Module Guide
12.4.19

Copyright Terms and Conditions

Copyright © Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective
owners.

The content in this document is protected by the Copyright Laws of the United States of America and other countries worldwide.
The unauthorized use and/or duplication of this material without express and written permission from Fortra is strictly prohibited.
Excerpts and links may be used, provided that full and clear credit is given to Fortra with appropriate and specific direction to the
original content.

202303010323

beSTORM Overview 1

Overview 1

Test case generation 1

Data origination algorithm 1

Customizing beSTORM 4

Overview 4

Function defined by DLL 5

Specification of sample DLL 5

XML syntax 6

Customized fuzzing (summary) 12

Overview of the UAC USB Peripheral Module 14

USB peripheral module architecture 14

USB peripheral module functions 14

How to use functions 17

Auto-responding function 26

Logging 26

Behavior in case of abnormalities 27

Limitations and constraints 29

Overview USB Mass Storage Class 30

Device configuration 30

Data format 32

UAC USB Peripheral Module Guide www.fortra.com page: iii

Table of Contents

Get Max LUN 34

Inquiry command 35

Sample for Mass Storage 40

System overview 40

Content for mass storage class fuzzing 40

USB Fuzzing Setup 51

Acquire the hardware 51

Install the EZ-USB FX3 board 51

Flash the EZ-USB FX3 board's firmware 53

How to fuzz a USB device with the EZ-USB FX3 board 58

Communication Protocol for the Serial Offload Engine (SOE) 62

Overview of SOE packet 62

Specification of OP codes 64

Logging 78

Overview 78

Debug message 78

Description of the log file 80

Recovery Tool 87

Installing Python 3 (32-bit variant) 87

Overview of the recovery tool 88

Instruction 89

Customize the UAC USB Peripheral Module 94

Modifying mass storage sample 94

UAC USB Peripheral Module Guide www.fortra.com page: iv

Table of Contents

Modifying XML 97

Fuzzing with the modified XML 104

Resources 105

Building DLL 105

Building EZ-USB FX3 Firmware 107

UAC USB Peripheral Module Guide www.fortra.com page: v

Table of Contents

beSTORM Overview / Overview

beSTORM Overview
This section describes an overview of beSTORM. For more information, please refer to
Beyond Security's Users Guide or our tutorial materials.

Overview
beSTORM is an intelligent fuzzing tool that performs black box testing, which sends a large
number of test cases to various devices to detect vulnerabilities in the devices. Fuzzing can
be done easily by creating user-defined files not only for pre-defined protocols, but also for
user-specific protocols and arbitrary interfaces such as APIs on platforms and driver layers.
The figure below shows a general image of beSTORM usage.

Test case generation
beSTORM generates test cases according to the data structure and procedures defined in
advance in XML format, which can be customized by the user. User-defined "data
structures" allow for efficient and exhaustive test case generation.

Data origination algorithm
beSTORM can specify a buffer type for each data to be tested, which is defined in the XML
module. beSTORM generates the data to be sent according to the buffer type.

The following is an example of a typical case of a beSTORM standard buffer type.

Repeated A

UAC USB Peripheral Module Guide www.fortra.com page: 1

beSTORM Overview / Data origination algorithm

beSTORM inserts the string A into the specified region. The test data is generated while
increasing the length of the string A to a predetermined number of bytes. For example, in
the case of this buffer type, it attempts to raise an exception related to a buffer overflow.

(Example of data change in the data area where Repeated A is set)

A
AA
AAA
AAA...A

Number generation
beSTORM assigns an integer in the representable range of up to 4 bytes (0 to 4294967295)
for the specified region. For example, in the case of this buffer type, it attempts to raise an
exception related to an integer overflow.

(Example of data change in the data area where Number Generating is set)

0
1
2
...
4294967295

For reference, the following screen shows a list of standard buffer types.

Monitoring function

UAC USB Peripheral Module Guide www.fortra.com page: 2

beSTORM Overview / Data origination algorithm

beSTORM has a monitor function to detect test cases in real-time when an exception
occurs. When an error occurs, the monitor needs to send the error information to
beSTORM's Exception Port (UDP Port) and beSTORM saves the received information. To
use the monitoring function, it is necessary to implement a program that detects anomalies
in the fuzzing target device and sends UDP to beSTORM. It is also possible to control the
pause/resumption of beSTORM usage.

UAC USB Peripheral Module Guide www.fortra.com page: 3

Customizing beSTORM / Overview

Customizing beSTORM
beSTORM can be customized for functions and communications that are not provided by
the tool. This section describes the basics of customization. For more information, please
refer to Beyond Security's Users Guide or our tutorial materials.

Overview
The basic behavior of beSTORM is shown below.

l beSTORM generates a project based on a scenario defined in XML.
l The XML defines how a module generates fuzzing data, what type of data it sends,
and how it looks and behaves.

l beSTORM generates fuzzing data based on the description of the buffer data defined
in XML.

l When select Start on the beSTORM screen to start fuzzing, beSTORM calls a DLL
(library) function to output fuzzing data to the opposite device.

l Each function defined in the DLL generates the payload data output (in addition to
the data output, it is possible to initialize and receive data).

l This call will be iterated multiple times (until all the generated fuzz data has been
sent).

l The name of the DLL file to be called and the contents of the function are described
in XML.

UAC USB Peripheral Module Guide www.fortra.com page: 4

Customizing beSTORM / Function defined by DLL

beSTORM works as described above. As for the standard protocols, beSTORM itself
maintains XML data and uses internal libraries to communicate with it.

beSTORM, on the other hand, is characterized by a high degree of customization. You can
prepare functions described by the defined interface and define their names in XML for your
own control. For example, when a new serial communication standard comes out, you can
develop a function that performs the serial communication as a DLL (Win32API based) and
write XML to call the function.

Function defined by DLL
beSTORM loads the customized DLL with dynamic links and executes each function.
Therefore, it is necessary to implement a function according to the beSTORM specification
and export the function. The following is a prototype of the function to be exported.

extern "C" declspec(dllexport) bool FUNCTION (int inSize, unsigned
char *in, int *outSize, unsigned char *out, Function_Modes eMode)

The beSTORM calls the function using the function name defined in XML, so the name can
be set arbitrarily. Multiple settings can also be made.

The arguments consist of input data and its size (defined by beSTORM), output data and its
size (defined by DLL), and the mode of operation.

In beSTORM, input and output data are handled by packing multiple data (consisting of
names and values). Therefore, it is composed of in and out as arguments.

Mode_Preview is specified when it is called to perform analysis in order to display on
Module Browser, etc., and Mode_Execute is specified when it actually runs the test.
Therefore, the function implemented in DLL implements the actual communication when
this argument is Mode_Execute.

The return value is bool. Normally, it returns true. It returns false to notify beSTORM of
anomalies.

When you build a customized fuzzing system, you need to prepare a DLL program to
communicate with the target device, and build a program to send or receive arbitrary data if
necessary. You include the fuzzing data in this arbitrary data.

Specification of sample DLL

UAC USB Peripheral Module Guide www.fortra.com page: 5

Customizing beSTORM / XML syntax

This section explains how to customize the functions in beSTORM with practical examples.
Here are sample specifications, assuming that the following two functions exist in the DLL
located at c:\work\uac_sample1.dll for running fuzzing.

Functions Defined in Sample DLL

Function name Description
UAC_sample1 Input Data

l BIN=0x30(fixed)
l TEXT=”abcd”(fixed)

Output Data

l RET_1ST(always returns ”1234”)

UAC_sample2 Input Data
l faz1(fuzzing data set by beSTORM)
l ret1(set the RET_1ST of uac_sample1 here)

Output Data

l None

l This example consists of setting in UAC_sample1 and fuzzing in UAC_sample2.
l It is assumed that the DLL performs fuzzing by sending data from faz1 (USB,
Ethernet, etc.).

l In beSTORM, it is possible to set the return value of the previously called function to
the argument of the next function as shown in ret1 above. This is an effective
mechanism for controlling devices (such as sockets/device drivers) using handle
values.

XML syntax
The following is the XML that calls the DLL defined in the previous section and performs
fuzzing.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beSTORM SYSTEM '\Program Files\beSTORM\beSTORM.dtd'>
<beSTORM Version="1.2">
<Global></Global>
<GeneratorOptSettings><BT FactoryDefined="1"
FactoryType="Binary"/></GeneratorOptSettings>
<ModuleSettings>
<M Name="UAC Customize TEST1">

UAC USB Peripheral Module Guide www.fortra.com page: 6

Customizing beSTORM / XML syntax

<P Name="UAC test protcol">
<SC Name="UAC test Sequence">
<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1
SC1"Procedure="UAC_sample1"> Command to call the function S
Name="BIN" ParamName="BIN">
<C Name="data" Value="0x30"/>
</S>
<S Name="TEXT" ParamName="TEXT">
<C ASCIIValue="abcd" Name="text"/>
</S>
</SP>
<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1 SC2"
Procedure="UAC_sample2">
<S Name="ret1" ParamName="ret1">
<PC ConditionedName="UAC_sample1 SC1" Name="ret1" Parameter="RET_
1ST"/>
</S>
<S Name="faz1" ParamName="faz1">
<B Name="faz" Value="0x30"/>
</S>
</SP>
</SC>
</P>
</M>
</ModuleSettings>
</beSTORM>

The following figure shows the display of ModuleBrowser when a project is created using
XML as described in the previous section.

UAC USB Peripheral Module Guide www.fortra.com page: 7

Customizing beSTORM / XML syntax

The following is the description of the overview for each tag. For more information, please
refer to the beSTORM Users Guide or our tutorial materials.

Configuration section
l xml tag, !DOCTYPE, and beSTORM tag are specified as the settings above. (This part
does not change depending on the specification.)

l GeneratorOptSettings specifies the beSTORM default fuzzing buffer specification.
FactoryDefined="1" FactoryType="Binary" applies the beSTORM default fuzzing
buffer specification The buffer specifications are described later in Buffer types on
page 10.

l The M tag can be used to specify an arbitrary module name.
l The P tag is an arbitrary protocol name.

Section for sequence/function call
l The SC tag is an arbitrary sequence name, and if you put SP tags after the SC tag,
beSTORM behaves as if it repeats those processes.

l It is possible to describe the function call by using SP tag. I'll elaborate on each one
below.

UAC_sample1 function

<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1 SC1"
Procedure="UAC_sample1">
<S Name="BIN" ParamName="BIN">
<C Name="data" Value="0x30"/>
</S>
<S Name="TEXT" ParamName="TEXT">
<C ASCIIValue="abcd" Name="text"/>
</S>
</SP>

l The Library attribute specifies the path of the DLL to be used.
l The Name attribute will be displayed in the Module Browser, so you can enter any
character string.

l The Procedure attribute specifies the name of the function. Therefore, it needs to be
consistent with DLL implementation.

l S tag contains settings of the arguments. The Name attribute of S tag specifies the
string displayed in Module Browser. The ParamName attribute specifies the name of
the variable notified to the DLL, so you need to match it with the DLL
implementation.

UAC USB Peripheral Module Guide www.fortra.com page: 8

Customizing beSTORM / XML syntax

l The data column to be set is listed under the S tag. As the example above uses a C
tag, it means a constant. The constant data is not used as fuzzing data, but passed
to the DLL as it is. In the above example, the data "BIN=0x30, TEXT="abcd"" is
passed to the DLL.

l Calling UAC_sample1 returns the return value of RET_1ST, which beSTORM keeps.
The data is available in XML. We actually use it in the following UAC_sample2. The
name of this return value is dependent on the DLL implementation.

UAC_sample2 function

<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1 SC2"
Procedure="UAC_sample2">
<S Name="ret1" ParamName="ret1">
<PC ConditionedName="UAC_sample1 SC1" Name="ret1" Parameter="RET_
1ST"/>
</S>
<S Name="faz1" ParamName="faz1">
<B Name="faz" Value="0x30"/>
</S>
</SP>

l The Library attribute specifies the path of the DLL to be used.
l The Name attribute will be displayed in the Module Browser, so you can enter any
character string.

l The Procedure attribute specifies the name of the function. Therefore, it needs to be
consistent with DLL implementation.

l S tag contains settings of the arguments.
l By using PC tags, it is possible to use the return value of a previously called function.
In this case, ConditionName is the value of Name of SP tag of the corresponding
function, Parameter is the name of return value (this is defined in the DLL
implementation specification), and Name tag is the string to be displayed by Module
Browser.

l In the example above, the return value RET_1 ST of UAC_sample1 is specified as
the argument RET1 of the UAC_sample2 function.

l In the example above, we have the data faz1, which is specified by using the B tag
under the S tag, where B tag means the data to be fuzzed. The default value is set to
0x30. Because FAZ1 is set to fuzzing data, which is actually set to various contents
of various lengths.

l To summarize, this XML passes the two values "ret1=ret1=return value of
UAC_sample1, fuzz=fuzz data" to UAC_sample2.

Sequence

UAC USB Peripheral Module Guide www.fortra.com page: 9

Customizing beSTORM / XML syntax

If the SC tag contains the fuzzing data, beSTORM repeats the process for the number of
fuzz data. In the case of XML described in this section, it works as shown below.

The UAC_sample1 function does not contain fuzzing data, but it is called repeatedly
because it is in the SC tag. Then, various fuzzing data are set to faz1 of the UAC_sample2
function, and it is repeated. What kind of fuzzing data is set up will be explained in the next
section.

Buffer types
If FactoryDefined="1" and FactoryType="Binary", the beSTORM default fuzzing
buffer specification will be applied. Concretely, the following data is generated and fuzzed
(the function defined in the DLL is called for the number of generated patterns).

Buffer types

Buffer type Data to be generated
Repeated A A, AA, AAA, ... and so on, increasing the string A up to 65535 bytes (*1).

Repeated %n Generate the string %n, %n%n, %n%n%n ... while increasing the string
%n to a maximum of 65535 bytes (*1), such as %n, %n%n%n, %n%n%n
...

UAC USB Peripheral Module Guide www.fortra.com page: 10

Customizing beSTORM / XML syntax

Buffer type Data to be generated
Repeated
NULL

0x00, 0x00 0x00 0x00, 0x00 0x00 0x00 ... and so on, while
increasing the binary data of 0x00 up to 65535 bytes (*1).

Number
Generating

The expression range of up to 4 bytes is set as unsigned for the specified
area (0x00 to 0xffffffffff).

Repeated FF 0xff, 0xff 0xff 0xff, 0xff 0xff 0xff ... and so on, while
increasing the binary data of 0xfe up to 65535 bytes (*1).

Repeated FE 0xfe, 0xfe 0xfe 0xfe, 0xfe 0xfe 0xfe ... and so on, while
increasing 0xff binary data up to 65535 bytes (*1).

Repeated
FFFE

0xff 0xfe, 0xff 0xfe 0xfe 0xfe 0xff 0xfe, 0xff 0xfe
0xfe 0xfe 0xfe 0xfe
0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe ... and so on, while
increasing the binary data of 0xff 0xfe to a maximum of 32766 bytes
(*1).

Repeated
FEFF

0xfe 0xff, 0xfe 0xff 0xff 0xfe 0xff 0xff, 0xfe 0xff
0xff 0xfe 0xff 0xfe 0xfe 0xff ... and so on, while increasing
the binary data of 0xfe 0xff to a maximum of 32766 bytes (*1).

l *１：Because of the relationship with other data used at the same time, a value lower
than the maximum written above may be required.

l The number of data patterns can be changed by specifying a ScaleType, which can
be changed from SETTINGS in beSTORM.

How to specify custom buffer type:

To define your own buffer type, use the T tag below the BT tag to enumerate the buffer type.
Examples are given below (see the beSTORM User Guide for more information).

<GeneratorOptSettings>
<T Name="Repeated A" Max="65536" ASCIIValue="A" />
<T Name="Repeated %n" Max="65536" ASCIIValue="%n" />
<T Name="Repeated NULL" Max="65536" Value="00" />
<T Name="BiggerSmaller" Max="32768" ASCIIValue="<>" />
<T Name="Repeated Space" Max="65536" ASCIIValue=" " />
</GeneratorOptSettings>

In this example, no binary fuzzing data is generated, only string repetition is performed:
BiggerSmaller repeats the <> string and Repeated Space repeats the space (ASCII code
0x20). Including them, the XML defines five different repetition patterns.

How to specify buffer type more precisely:

UAC USB Peripheral Module Guide www.fortra.com page: 11

Customizing beSTORM / Customized fuzzing (summary)

The data passed to the DLL can be specified in detail. The faz1 data shown so far only has a
single buffer, but it is also possible to arrange multiple data as shown below.

<S Name="faz1" ParamName="faz1">
<B MaxBytes="1" Name="TEST1" Value="0x00"/>
<C Name="TEST2" Value="0x88"/>
<B MaxBytes="1" Name="TEST3" Value="0xff"/>
<C Name="TEST4" Value="0xaa"/>
</S>

In this example, the faz1 data contains the following four data:

l Up to 1 byte of fuzzing data (default 0x00)
l Fixed value 0x88
l Up to 1 byte of fuzzing data (default 0xff)
l Fixed value 0xff

Therefore, the function in the DLL is passed as a data sequence of the form "Fuzzing
data (TEST1), 0x88, Fuzzing data (TEST2), 0xff".

If multiple fuzzing targets are defined in the same data, only one of them is actually fuzzed.
For example, in the above example, any data of "indefinite value, 0x88, 0xff,
0xaa" or "0x00, 0x88, indefinite value, 0xaa" is passed to the DLL.

You can write like this when you need to mix the fixed value and fuzzing data according to
the packet data specification of the target protocol.

Customized fuzzing (summary)
This is a summary of what you need to do for fuzzing customization.

l Prepare the DLL that performs the relevant communication.
l Describes the XML (or modifies the provided XML) according to the DLL
specification.

l ML describes the path to the DLL to be used, the definition of fuzzing data,
other necessary settings, functions to be called, etc.

l It is also possible to change the structure of the fuzzing data by changing the
definition below the S tag.

Once the XML is created, generate the project with beSTORM. Select the XML you have
created as shown below.

UAC USB Peripheral Module Guide www.fortra.com page: 12

Customizing beSTORM / Customized fuzzing (summary)

After making a selection, select Start to begin fuzzing.

UAC USB Peripheral Module Guide www.fortra.com page: 13

Overview of the UAC USB Peripheral Module / USB peripheral module architecture

Overview of the
UAC USB Peripheral Module
USB peripheral module architecture
To send fuzzing data to a USB host, the USB peripheral function is required. Therefore, the
USB Peripheral module requires a separate device that provides the peripheral function. The
figure below shows a configuration diagram including a separate Serial Offload Engine
(SOE) device.

l The beSTORM on the left side of the figure above is a Windows PC with beSTORM
installed.

l An SOE is a USB peripheral device that can be controlled from Windows by way of
USB serial communication. Currently, beSTORM uses the EZ-USB FX3 board from
Cypress (https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-
003/).

l Target refers to a device that operates as a USB host, such as a Windows PC.
l The fuzzing data created by beSTORM is sent to the SOE by way of a DLL and then
sent to the target as data from the USB peripheral.

l Data is exchanged between DLLs and SOEs (USB serials) via an original
communication format called SOE packets. See the Communication Protocol for
SOE (Serial Offload Engine) chapter for more information.

l We provide the following resources as a USB Peripheral Module (refer to the
Resources chapter for more information):

l DLL (including source code)
l SOE firmware (including source code)
l An XML or CSV file containing sample fuzzing scenarios

USB peripheral module functions

UAC USB Peripheral Module Guide www.fortra.com page: 14

https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/

Overview of the UAC USB Peripheral Module / USB peripheral module functions

The USB Peripheral Module is provided by best_uac_usbd.dll, which provides the
following features from XML.

List of USB peripheral module functions

Function Description
Start USB
fuzzing
protocol

Start a series of fuzzing processes.

Wait for the
SOE to be
ready

Waits for the SOE device to become ready to communicate. At this point,
there is still no USB connection to the target.

Set Descriptor Sets a USB descriptor for the SOE. By changing this setting, the target
can be recognized as an arbitrary device. The following descriptors can
be set from XML:

l Device qualifier
l Descriptor configuration descriptor (including interfaces,
endpoints, etc.)

l String descriptor (language ID)
l String descriptor (manufacturer)
l String descriptor (product)

Start Fuzzing
sequence

Indicates the start of the fuzzing data processing sequence. Enumerates
a USB connection with the SOE.

Wait for OUT
transfer
reception

Waits for data to arrive from the specified endpoint from the target.

Process IN
transfer
transmission

Sends data from the specified endpoint to the target.

End fuzzing
sequence

Indicates the end of the fuzzing data processing sequence. Performs the
USB disconnect process at the SOE.

Sleep Sleeps for a specified amount of time.

End USB
fuzzing
protocol

Ends the fuzzing process.

The basic flow of fuzzing using the USB Peripheral Module is shown below.

UAC USB Peripheral Module Guide www.fortra.com page: 15

Overview of the UAC USB Peripheral Module / USB peripheral module functions

*1: In this example, we wait for reception before sending, but the description should be
adapted to the actual communication specification. This part of the procedure describes
the XML according to the actual target.

In the field labeled by※1, you should specify an XML tailored for the specific target as
shown above. Please code the XML using multiple sequences (SC tags) as it is assumed
that the USB Peripheral Module repeats only the blue part in the figure. See XML section of
the Sample for Mass Storage chapter for a practical example.

By defining arbitrary communication in XML, you can perform fuzzing according to the
target protocol.

The USB Peripheral Module supports the auto-responding function. When communication
other than fuzzing is performed in parallel, it is possible to set up this automatic response

UAC USB Peripheral Module Guide www.fortra.com page: 16

Overview of the UAC USB Peripheral Module / How to use functions

function in conjunction with the communication. For details of the auto-responder function,
please refer to Auto-responding function on page 26.

How to use functions
Here's an XML example of how to use each feature: in the Library attribute, you need to
specify the DLL path, in this case c:\Work. This can be rewritten and used according to the
environment.

Begin USB fuzzing protocol (UAC_usb_start)
This is to start fuzzing process (UAC_usb_start function). Make sure to call it only once
for the first time.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_usb_start SC"
Procedure="UAC_usb_start">
<S Name="COM_PORT" ParamName="COM_PORT">
<EV ASCIIValue="4" Description="COM" Name="COM" Required="1"/>
</S>
<S Name="CSV_FILE" ParamName="CSV_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.csv" Description="CSV_ATH"
Name="CSV_ATH" Required="1"/>
</S>
<S Name="LOG_FILE" ParamName="LOG_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.log" Description="LOG_PATH"
Name="LOG_PATH" Required="1"/>
</S>
<S Name="RECORD_FILE" ParamName="RECORD_FILE">
<EV ASCIIValue="C:\TEMP\best_record.dat" Description="RECORD_PATH"
Name="RECORD_PATH" Required="1"/>
</S>
<S Name="ILLEGAL_TIMER" ParamName="ILLEGAL_TIMER">
<EV ASCIIValue="3000" Description="timer" Name="timer"
Required="1"/>
</S>
<S Name="SER_ERR_RETRY_COUNT" ParamName="SER_ERR_RETRY_COUNT">
<EV ASCIIValue="3" Description="ser_err_retry_count" Name="ser_err_
retry_count" Required="1"/>
</S>
<S Name="USB_DATA_TIMEOUT" ParamName="USB_DATA_TIMEOUT">
<EV ASCIIValue="600" Description="usb_data_timeout" Name="usb_data_
timeout" Required="1"/>
</S>
</SP>

UAC USB Peripheral Module Guide www.fortra.com page: 17

Overview of the UAC USB Peripheral Module / How to use functions

The XML requires the following arguments.

l COM_PORT Serial port used to communicate with the SOE.
l CSV_FILE Path to the CSV file containing the rules for the automatic response.
l LOG_FILE Path to the log file. This DLL outputs its own log separately from the
beSTORM.

l RECORD_FILE Path to the record data for the recovery tool.
l ILLEGAL_TIMER Time to wait in the event of a communication failure with the SOE,
usually this value is used.

l SER_ERR_RETRY_COUNT Number of retries in case of serial communication error.
Normally, this value in the example is used.

l USB_DATA_TIMEOUT IN transfer/OUT transfer timeout (interruption. The unit is a
second. Normally, the value in the example is used.

COM_PORT specifies the serial port to use for communication with the SOE (EZ-USB3).
You can also specify the path of CSV file and log file for this fuzzing, which will be explained
later. ILLEGAL_TIMER is supposed to be used for adjustment in case of abnormalities, but
usually this value is used as it is.

SER_ERR_RETRY_COUNT sets the number of retries to be performed when a serial
communication error occurs. Normally, use the default 3 as is (in most cases, a single retry
is enough).

USB_DATA_TIMEOUT is a communication timeout. The default setting is 10 minutes, which
might be long. If the host issues a USB bus reset for an inappropriate device, you do not
need to use this function (leave it as the default). It is used to determine the error when the
bus is stopped without issuing a bus reset.

It is expected that these values will be different for each environment. Therefore, EV tags
can be used to customize from beSTORM's GUI. If you use the example, you can modify it
from the SETTING screen as shown below.

UAC USB Peripheral Module Guide www.fortra.com page: 18

Overview of the UAC USB Peripheral Module / How to use functions

Also, when this function is called, the following message will appear to prompt you to
initialize the SOE (EZ-USB FX3). In that case, initialize the SOE (EZ-USB FX3) and select OK.

Wait for the SOE to be ready (UAC_wait_for_start)
Wait for the EZ-USB side to be able to communicate. Call the UAC_wait_for_start
function as shown below. You don't need to specify the data.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_wait_for_start SC"
Procedure="UAC_wait_for_start"/>

Set descriptor for USB2.0 (UAC_set_dev_desc20)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_dev_desc20 SC"
Procedure="UAC_set_dev_desc20">
<S Name="DevDesc20" ParamName="DevDesc20">
<C Name="bLength" Value="0x12"/>
<C Name="bDescriptorType" Value="0x01"/>
<C Name="bcdUSB" Value="0x10 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="idVendor" Value="0x45 0x04"/>
<C Name="idProduct" Value="0xf1 0x00"/>
<C Name="bcdDevice" Value="0x00 0x00"/>
<C Name="iManufacturer" Value="0x01"/>
<C Name="iProduct" Value="0x02"/>
<C Name="iSerialNumber" Value="0x00"/>
<C Name="bNumConfigurations" Value="0x01"/>
</S>
</SP>

Set the device descriptor with a C tag (fixed value) in compliance with the USB 2.0
specification in the data DevDesc20. The above is an example and can be set to any value.

UAC USB Peripheral Module Guide www.fortra.com page: 19

Overview of the UAC USB Peripheral Module / How to use functions

Set descriptor for USB3.0 (UAC_set_dev_desc30)
Set the device descriptor for with a C tag (fixed value) in compliance with the USB 3.0
specification in the data DevDesc30. The above is an example and can be set to any value.

Set device qualifier descriptor (UAC_set_qual_desc)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_qual_desc SC"
Procedure="UAC_set_qual_desc">
<S Name="QualDesc" ParamName="QualDesc">
<C Name="bLength" Value="0x0a"/>
<C Name="bDescriptorType" Value="0x06"/>
<C Name="bcdUSB" Value="0x00 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="bNumConfigurations" Value="0x01"/>
<C Name="bReserved" Value="0x00"/>
</S>
</SP>

Set the device qualifier descriptor in compliance with USB specification with C tag (fixed
value) in data QualDesc. The above is an example and can be set to any value.

Configuration descriptor for full speed (UAC_set_fs_
config)
<sp library="c:\work\best_uac_usbd.dll" name="uac_set_fs_config sc"
procedure="uac_set_fs_config">
<s name="fsconfig" paramname="fsconfig">
<c name="blength" value="0x09"/>
<c name="bdescriptortype" value="0x02"/>
<c name="wtotallength" value="0x20 0x00"/>
<c name="bnuminterface" value="0x01"/>
<c name="bconfigurationvalue" value="0x01"/>
<c name="iconfiguration" value="0x00"/>
<c name="bmattributes" value="0x80"/>
<c name="bmaxpower" value="0x32"/>
<c name="blength" value="0x09"/>
<c name="bdescriptortype" value="0x04"/>
<c name="binterfacenumber" value="0x00"/>
<c name="balternatesetting" value="0x00"/>
<c name="bnumendpoints" value="0x02"/>

UAC USB Peripheral Module Guide www.fortra.com page: 20

Overview of the UAC USB Peripheral Module / How to use functions

<c name="binterfaceclass" value="0x08"/>
<c name="binterfacesubclass" value="0x06"/>
<c name="binterfaceprotocol" value="0x50"/>
<c name="iinterfaceprotocol" value="0x00"/>
<c name="blength" value="0x07"/>
<c name="bdescriptortype" value="0x05"/>
<c name="bendpointaddress" value="0x81"/>
<c name="bmattributes" value="0x02"/>
<c name="wmaxpacketsize" value="0x40 0x00"/>
<c name="binterval" value="0x00"/>
<c name="blength" value="0x07"/>
<c name="bdescriptortype" value="0x05"/>
<c name="bendpointaddress" value="0x02"/>
<c name="bmattributes" value="0x02"/>
<c name="wmaxpacketsize" value="0x40 0x00"/>
<c name="binterval" value="0x00"/>
</s>
</sp>

l Set the descriptor in compliance with USB specification with C tag (fixed value) in
the data FSCONFIG. The above is an example and can be set to any value.

l Set each descriptor that follows a configuration descriptor here. The above example
sets the interface descriptor and the endpoint descriptor.

l The SOE (EZ-USB FX3) will configure the endpoint based on this endpoint descriptor.
l Endpoint numbers from 1 to 8 can be specified (0x81 - 0x88 in the case of IN
transfer).

Configuration descriptor for Super Speed (UAC_set_ss_
config)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_ss_config SC"
Procedure="UAC_set_ss_config">
<S Name="SSCONFIG" ParamName="SSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>

UAC USB Peripheral Module Guide www.fortra.com page: 21

Overview of the UAC USB Peripheral Module / How to use functions

<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
</S>
</SP>

l Set the descriptor in compliance with USB specification with C tag (fixed value) in
the data SSCONFIG. The above is an example and can be set to any value.

l Set each descriptor that follows a configuration descriptor here. The above example
sets the interface descriptor, the endpoint descriptor, and the maximum length
descriptor for Burst transfer as it is USB 3.0.

l The SOE (EZ-USB FX3) will configure the endpoint based on this endpoint descriptor.
l Endpoint numbers from 1 to 8 can be specified (0x81 - 0x88 in the case of IN
transfer).

Set string descriptor (Language ID) (UAC_set_str_lang)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_str_lang SC"
Procedure="UAC_set_str_lang">
<S Name="StrLang" ParamName="StrLang">
<C Name="bLength" Value="0x04"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="wLANGID" Value="0x09 0x04"/>

UAC USB Peripheral Module Guide www.fortra.com page: 22

Overview of the UAC USB Peripheral Module / How to use functions

</S>
</SP>

Set the string descriptor in compliance with USB specification with C tag (fixed value) in the
data StrLang. The above is an example and can be set to any value.

Set string descriptor (Manufacturer) (UAC_set_str_
manufacture)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_str_
manufacture SC" Procedure="UAC_set_str_manufacture">
<S Name="StrManufacture" ParamName="StrManufacture">
<C Name="bLength" Value="0x10"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x43 0x00 0x79 0x00 0x70 0x00 0x72 0x00
0x65 0x00 0x73 0x00 0x73 0x00"/>
</S>
</SP>

Set the string descriptor in compliance with USB specification with C tag (fixed value) in the
data StrManufacture. The above is an example and can be set to any value.

Set string descriptor (Product) (UAC_set_str_product)
<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_set_str_product
SC" Procedure="UAC_set_str_product">
<S Name="StrProduct" ParamName="StrProduct">
<C Name="bLength" Value="0x08"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x55, 0x00, 0x41, 0x00, 0x43, 0x00"/>
</S>
</SP>

Set the string descriptor in compliance with USB specification with C tag (fixed value) in the
data StrProduct. The above is an example and can be set to any value.

Start fuzzing sequence (UAC_sequence_start)
When the UAC_sequence_start function is called, the SOE (EZ-USB FX3) performs USB
connection processing and enumeration with the target device. UAC_sequence_start
must be placed immediately after the SC tag, and no data need to be specified.

UAC USB Peripheral Module Guide www.fortra.com page: 23

Overview of the UAC USB Peripheral Module / How to use functions

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_sequence_start SC"
Procedure="UAC_sequence_start"/>

Wait for OUT transfer reception (UAC_recv_outep)
When the UAC_recv_outep function is called, it waits until the data of the specified
endpoint is received. The USB IN/OUT direction is seen from the host's point of view, so
from the peripheral's point of view, the OUT transfer means the reception direction.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_recv_outep SC1"
Procedure="UAC_recv_outep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x02"/>
</S>
<S Name="BUS_RESET" ParamName="BUS_RESET">
<C ASCIIValue="SKIP" Name="bus_reset"/>
</S>
</SP>

l Set the endpoint number to be received by the EP with a C tag (fixed value). The
above example waits for data from endpoint 0x02.

l Set the behavior when the bus reset is issued from the target (USB host) in BUS_
RESET by selecting from the following. The above is an example of a SKIP.

l SKIP Ignores the SKIP bus reset and continues to wait for the OUT transfer.
l ERROR Treat the BUS_RESET as an error (warning) and stops the processing.
l BREAK Does not cause an error but terminates UAC_recv_outep.

Process IN transfer transmission(UAC_send_inep)
When the UAC_recv_inep function is called, the data is sent from an arbitrary endpoint.
The USB IN/OUT direction is seen from the host's point of view, so from the peripheral's
point of view, the IN transfer means the transmission direction.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_send_inep response
SC" Procedure="UAC_send_inep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x81"/>
</S>
<S Name="data" ParamName="data">
<B Name="faz" Value="0x30"/>
</S>
</SP>

UAC USB Peripheral Module Guide www.fortra.com page: 24

Overview of the UAC USB Peripheral Module / How to use functions

l Set the endpoint number to be sent to the EP with a C tag (fixed value). The above
example sends data to 0x81.

l Set the payload data to be sent. In the above example, one fuzzing data (default
0x30) is specified.

In the USB Peripheral Module, fuzzing data is sent from the UAC_send_inep function.

End fuzzing sequence (UAC_sequence_end)
When the UAC_sequence_end function is called, the SOE (EZ-USB FX3) performs USB
disconnection and USB away from the target device in a USB-like manner. You don't need to
specify the data.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_sequence_end SC"
Procedure="UAC_sequence_end"/>

Sleep (UAC_usb_sleep)
Calling the UAC_usb_sleep function can make the device sleep for a certain amount of
time, which is supposed to be used when you want to put some time after UAC_sequence_
end, for example..

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_usb_sleep csw SC"
Procedure="UAC_usb_sleep">
<S Name="msec" ParamName="msec">
<C ASCIIValue="2000" Name="value"/>
</S>
</SP>

Set the sleep time (in msec) with a C tag (fixed value) in msec. In the above example, it
waits for 2 seconds.

End USB fuzzing protocol (UAC_usb_stop)
This is to end fuzzing processing (UAC_usb_stop function). Make sure to call only once at
the end. You don't need to specify the data.

<SP Library="C:\work\best_uac_usbd.dll" Name="UAC_usb_stop SC"
Procedure="UAC_usb_stop"/>

The DLL releases the source release etc. internally.

UAC USB Peripheral Module Guide www.fortra.com page: 25

Overview of the UAC USB Peripheral Module / Auto-responding function

Auto-responding function
The USB Peripheral Module can automatically return up to 256-bytes of data for
communications from non-fuzzed endpoints. The data returned automatically in the form of
CSV, described as follows:

Number of data records,Target endpoint comparison size, comparison
data (multiple),transmission endpoint number,data size,transmission
data (multiple)

(Repeat the above for the number of records)

Also, when there is a # at the beginning of a line, it is considered a comment. The following
is an example of two automated responses:

In the above example, the response will be returned as follows.

l When the data 0xa1, 0xfe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00 is received from Endpoint 0 (control transfer), the data 0x01 is
returned to Endpoint 0 (control transfer).

l When the data 0x01,0x02,0x03,0x04 is received from Endpoint 0x07, the data
0xF1, 0xF2, 0xF3, 0xF4 is returned to Endpoint 0x86.

This behavior is triggered in the DLL regardless of UAC_recv_outep or UAC_send_inep,
and the CSV file uses the data set at UAC_usb_start and the path defined in CSV_FILE.

Logging
The USB Peripheral Module has a function to output the status of communication with the
SOE (EZ-USB FX3) to a separate log file, apart from beSTORM. By looking at this log, you
can see what USB communication was done. The following is an excerpt from the actual
log:

UAC USB Peripheral Module Guide www.fortra.com page: 26

Overview of the UAC USB Peripheral Module / Behavior in case of abnormalities

[2019/08/23 16:46:14.0624][beSTORM][enter UAC_sequence_start : 0-10
] [2019/08/23 16:46:14.0624]UAC_USBD_SequenceStart
[2019/08/23 16:46:14.0624]#--->UAC_SOE_OP_START_USB len 0
[2019/08/23 16:46:14.0624]
[2019/08/23 16:46:14.0827]#<--UAC_SOE_OP_START_USB len=4 [2019/08/23
16:46:14.0827] 00 00 00 00
[2019/08/23 16:46:14.0827] * SUCCESS
[2019/08/23 16:46:14.0827][beSTORM][enter UAC_recv_outep : 0-11]
[2019/08/23 16:46:15.0312]#<--UAC_SOE_OP_BUS_RESET len=0 [2019/08/23
16:46:15.0553]#<--UAC_SOE_OP_BUS_RESET len=0 [2019/08/23
16:46:15.0803]#<--UAC_SOE_OP_SETCONFIG len=4 [2019/08/23
16:46:15.0803] 00 00 00 00
[2019/08/23 16:46:15.0803] * ConfigValue:0x0
[2019/08/23 16:46:16.0047]#<--UAC_SOE_OP_CTRL_REQ_RECV len=8
[2019/08/23 16:46:16.0047] a1 fe 00 00 00 00 01 00
[2019/08/23 16:46:16.0047]#--->UAC_SOE_OP_CTRL_RESPONSE len 1
[2019/08/23 16:46:16.0047] 0x01
[2019/08/23 16:46:16.0066]#<--UAC_SOE_OP_OUT_RECV len=35
[2019/08/23 16:46:16.0066] 02 00 00 00 55 53 42 43 d0 34 5d 0f 24
00 00 00 80 00 06 12 00 00 00 24 00 00 00 00 00 00 00 00 0000 00
[2019/08/23 16:46:16.0066] * Endpoint:0x02 [2019/08/23
16:46:16.0066] * length=31

The log file is output to the path defined in the data LOG_FILE at UAC_usb_start.

It is also output to Windows debug messages during fuzzing to check the operation.
Therefore, you can use tools such as DbgView to check the running status in real-time.

For details of the log contents and debug messages, please refer to the Logging chapter.

Behavior in case of abnormalities

Behavior when an error occurs
The designed behavior for exceptions such as UAC_recv_outep (when BUS_RESET is
ERROR) or bus reset is issued from the target during the processing of UAC_send_inep is
as follows:

l Sleeps for the time set by the data ILLEGAL_TIMER of UAC_usb_start.
l Indicates a USB disconnect to the SOE (EZ-USB FX3).
l Skips all DLL requests without processing until the next UAC_sequence_end
process.

l Logs the skip.

UAC USB Peripheral Module Guide www.fortra.com page: 27

Overview of the UAC USB Peripheral Module / Behavior in case of abnormalities

The following is an example of the behavior in case of an abnormality:

UAC_sequence_end process disconnects the USB and waits until the USB is
disconnected. The system is also implemented to retry when the disconnect cannot be
confirmed after a certain period of time (the retry process is performed by the monitor
described in Monitoring function on page 28)>

UAC_sequence_end process is dedicated only to disconnecting the USB. Therefore, if an
error occurs during the UAC_sequence_end process, it is left in the log, and if necessary, a
USB disconnection request is issued again.

When a serial communication error occurs, the DLL retries the last packet it tried to send.
The maximum number of retries is the number of times set by SER_ERR_RETRY_COUNT in
Begin USB fuzzing protocol (UAC_usb_start) on page 17.

When the completion of the IN and OUT transfer of USB does not return to the DLL until the
time specified by USB_DATA_TIMEOUT in Begin USB fuzzing protocol (UAC_usb_start) on
page 17, it skips all DLL requests without processing until the next UAC_sequence_end
processing as an error.

Monitoring function
The USB Peripheral Module has a monitor function that performs the following monitoring
processes:

1. When there is no communication with the SOE (EZ-USB FX3) for a certain period of
time (about 3 minutes), an EXCEPTION is issued to beSTORM to notify beSTORM
that it is in an abnormal condition.

2. When a USB disconnection is issued in UAC_sequence_end process, it monitors
the completion of the disconnection every 10 seconds. If the completion of the
disconnection cannot be observed, it will be disconnected again. The purpose of this
design is to ensure a secure transition to the disconnected state at the end of each
test.

Therefore, if serial communication with the SOE (EZ-USB FX3) does not occur at all for
some reason, the following error notification screen will appear on the beSTORM side.

UAC USB Peripheral Module Guide www.fortra.com page: 28

Overview of the UAC USB Peripheral Module / Limitations and constraints

Limitations and constraints
The restrictions are as follows:

l Currently, only support bulk transfer fuzzing is supported.
l Currently, only the fuzzing described in the Sample for Mass Storage and Customize
the USB Peripherial Module chapters has been tested.

l Fuzzing of control transfer is not supported (vendor and class requests will be
supported in the future).

l Fuzzing for interrupt transfer is not supported (to be supported in the future).
l Automatic responses are now only available for control transfers (other transfers
will be supported in the future).

As for the isochronous transfer, there is no plan to support it for now (please contact us if
necessary). The maximum transfer size for endpoint data is 512-bytes.

UAC USB Peripheral Module Guide www.fortra.com page: 29

Overview USB Mass Storage Class / Device configuration

Overview USBMass Storage
Class
Storage devices such as USB memory conforms to the USB mass storage class
specifications. In the mass storage class, the USB host issues SCSI/ATAPI commands to
control the storage device. This section describes the Overview of the USB mass storage
class (Bulk Only protocol).

Device configuration
USB mass storage class (Bulk Only protocol) requires following descriptors:

l Device descriptor (device qualifier descriptor).
l Configuration descriptor

l Interface descriptor
l Endpoint descriptor (bulk IN and bulk OUT)

The interface descriptor belongs to the configuration. The figure below shows the
descriptor configuration of a typical USB storage device.

In addition to those above, string descriptors containing texts (such as a device name) can
be defined.

UAC USB Peripheral Module Guide www.fortra.com page: 30

Overview USB Mass Storage Class / Device configuration

Device (device qualifier) descriptors and configuration descriptors are described in
compliance to the general USB specification. Interface descriptors are defined as follows (it
will be noted here that it is mass storage):

Interface descriptors

Field name Description
bLength Descriptor Size (9).

bDescriptor Descriptor Type (4)..

bInterFaceNumber Identification number of this interface (optional).

bAlternateSetting Setting value to select an alternative setting (default 0).

bNumEndpoints The number of endpoints an interface can have.

bInterfaceClass Class code - Storage class is 8.

bInterfaceSubClass Subclass code - if it is a storage device with SCSI command
specifications, it is set to 6.

bInterfaceProtocol Protocol code (0x50 for bulk-only).

iInterface Interface string descriptor index.

It is necessary to have two endpoint descriptors - bulk IN and OUT. The content of the
descriptor itself is set in compliance to the USB standard specification. Endpoint
descriptors are defined as follows:

Bulk IN

Field name Description
bLength Descriptor Size (7).

bDescriptor Descriptor Type (5).

bEndpointAddress Endpoint number 0x8n: n is an arbitrary endpoint number.

bmAttributes Attribute - 0x02 Bulk.

wMaxPacketSize Maximum packet size Default 64 for Full, 512 for high, and 1024 for
SS.

bInterval The polling interval is 0.

Bulk OUT

UAC USB Peripheral Module Guide www.fortra.com page: 31

Overview USB Mass Storage Class / Data format

Field name Description
bLength Descriptor Size (7).

bDescriptor Descriptor Type (5).

bEndpointAddress Endpoint number 0x0 : is an arbitrary endpoint number.

bmAttributes Attribute - 0x02 Bulk.

wMaxPacketSize Maximum packet size Default 64 for Full, 512 for high, and 1024 for
SS.

bInterval The polling interval is 0.

Data format
Control of the device is done using bulk transfer as follows.

1. Send the structured data called CBW (CommandBlockWrapper) to the device in a
bulk OUT transfer. The SCSI/ATAPI command is also included in this CBW.

2. When involving data transfer. it is done as using the bulk endpoint.
3. After the command processing is completed, the device sends the structured data

called CSW (CommandStatusWrapper) as a status to the bulk IN transfer and
notifies the USB host.

CBW (CommandBlockWrapper)
CBW is defined as follows:

UAC USB Peripheral Module Guide www.fortra.com page: 32

Overview USB Mass Storage Class / Data format

Common block wrapper

Bit-Byte 7 6 5 4 3 2 1 0
0-3 dCBWSignature

4-7 dCBWTag

8-11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved (0) bCBWLUN

14 Reserved (0) bCBWCBLength

15-30 CBWCB

l Set 43425355h (that is, USBC) in Little Endian to dCBWSignature.
l Set any number to dCBWTag, as it is used as a tag. The device keeps this value and
puts the value given by this dCBWTag into the status data (CSW) returned to the host
at the end of command processing. Hosts and devices can use this tag to check if
they are synchronized or not.

l Set the length of the data to dCBWDataTransferLength. Set this to 0 if you want
to issue a command with no data.

l Set the transfer direction to bmCBWFlags: D7 is 0 for data output, and D7 is 1 for
data input.

l Set a drive number specification to bCBWLUN.
l Set the length of the command packet to bCBWCBLength.
l This means that the SCSI/ATAPI command data itself will be placed in the CBWCB
location. Since CBW is fixed at 31 bytes, the rest of the SCSI/ATAPI command data
is padded with 0.

CSW (Command Status Wrapper)
CSW is defined as follows:

Command status wrapper

Bit-Byte 7 6 5 4 3 2 1 0
0-3 dCBWSignature

4-7 dCBWTag

8-11 dCSWDataResidue

12 bCSWStatus

UAC USB Peripheral Module Guide www.fortra.com page: 33

Overview USB Mass Storage Class / Get Max LUN

l Set 53425355h (that is, "USBS") in Little Endian to dCSWSignature.
l Set the same number as CBW's dCBWTag to dCBWTag.
l dCSWDataResidue means "leftover data." If the length of data the host has
processed differs from the length of data specified by dCBWDataTransferLength
in the CBW and the actual length of data processed, the device returns the difference
by setting dCSWDataResidue. The host can look at this to see if all the data has
been successfully processed or not.

l bCSWStatus is the state when the command processing is terminated. The device
sets the appropriate value here from the following:

Value of bCSWStatus

Value Description
0x00 Command processing succeeded.

0x01 Command processing failed.

0x02 Command processing was out of sync between host and device, so
processing failed.

0x03 or
larger

Reserved.

Get Max LUN
USB mass storage class (Bulk Only protocol) defines the Get Max Lun with a class
request. The definition of a request is as follows:

Get Max LUN

Field name Description
bmRequest 0xa1 (to interface)

bRequest 0xfe (Get Max LUN))

wValue 0

wIndex Set the bInterfaceNumber of the control target to the lower byte

wLength 1

The device receives the above and returns the maximum LUN of 1 byte. Typically, the
number of drives is set to -1.

UAC USB Peripheral Module Guide www.fortra.com page: 34

Overview USB Mass Storage Class / Inquiry command

Inquiry command
This section explains the definition of the Inquiry command that is a fuzzing target in
Sample for Mass Storage chapter.

The INQUIRY command is used to obtain information and functions of the device. The
information is defined to include the type of device, whether it is removable or not, as well
as a string of characters such as the name of the product or the manufacturer.

Command (host to device)

Inquiry command

Bit-Byte 7 6 5 4 3 2 1 0
0 Operation Code (12h)

1 Reserved EPVD

2 Page Code

3 Reserved

4 Allocation Length

5 Control
l EPVD and Page Code select the data to be retrieved, where 0 means the default
INQUIRY information; anything other than 0 will allow you to retrieve product data
called Vital Product Data (VPD). By default, 0 is specified.

l Allocation length is the host's buffer size. If the data to be returned is greater than or
equal to Allocation Length, the device will try to return the data in Allocation Length
bytes.

l Control is a configuration item for issuing commands in batch. By default, it is set to
0.

Response (device to host)

Response of inquiry command

Bit-
Byte

7 6 5 4 3 2 1 0

0 Peripheral Qualifier Peripheral Device Type

1 RMB Reserved

UAC USB Peripheral Module Guide www.fortra.com page: 35

Overview USB Mass Storage Class / Inquiry command

Bit-
Byte

7 6 5 4 3 2 1 0

2 Version

3 Reserved NORMAC
A

HISUP Response Data Format

4 Additional Length(n – 4)

5 SCCS ACC TPGS 3PC Reserved PROTECT

6 Reserved ENCSERV VS MULTIP Reserved

7 Reserved CmdQue VS

8 (MSB) Vendor Information (LSB)

15

16 (MSB) Product Identification (LSB)

31

32 (MSB) Product Revision Information (LSB)

35

In the above example, it is 36 bytes, but it is possible to expand it further and add the
vendor's own data. VS means Vendor Specific and can be defined by the vendor, but by
default it should be set to 0.

Peripheral qualifier

l 0 The specified LUN drive is an input/output device defined by the Peripheral Device
Type.

l 1 The specified LUN drive is an input/output device defined by the Peripheral Device
Type, but it is not actually connected.

l 3 The specified LUN drive is not supported.

Peripheral device type (excerpts of key items)

l 0 Direct access device (e.g., magnetic disks such as HDDs) 1 Sequential access
device (for example, magnetic tape).

l 2 Printer.
l 3 Processor.
l 4 Write-once device (device that can be written only once) 5 CD/DVD device.
l 6 Scanner.

UAC USB Peripheral Module Guide www.fortra.com page: 36

Overview USB Mass Storage Class / Inquiry command

l 7 Optical memory device.
l 8 Media Changer device (device like a jukebox).
l 9 Communication device (device that can be used for communication, etc.) 12 RAID
device.

RMB

l 0 Devices that cannot remove the media from the drive (such as fixed HDDs).
l 1 Devices that can remove media from the drive (such as CDs and DVDs).

Version: Compatible standard (extracts of key items)

l 0 Not compatible with any specific standard.
l 3 ANSI INCITS 301-1997 (SPC).
l 4 ANSI INCITS 351-2001 (SPC-2).
l 5 ANSI INCITS 408-2005 (SPC-3).
l 6 ANSI INCITS 513-2015 (SPC-4).
l 7 T10/BSR INCITS 503 (SPC-5).

NORMACA

l 0 NACA (Normal ACA) is not supported.
l 1 NACA (Normal ACA) is supported.

HISUP

l 0 Hierarchical Support Addressing is not used.
l 1 Hierarchical Support Addressing is used.

Response data format

Specify the version of the INQUIRY information. By default, the value is set to 2.

l 0 Information defined by the SCSI-1 standard.
l 1 Information defined in CCS (ATAPI X3T9.2/85-92) 2 Information defined by the
SCSI-2 standard.

Additional Length(n-4)

UAC USB Peripheral Module Guide www.fortra.com page: 37

Overview USB Mass Storage Class / Inquiry command

It refers to an additional data length. Specifically, it is the length from Byte5 as mentioned in
the previous section. If there is no additional data in the standard INQUIRY, it will be set to
"31."

SCCS

l 0 SCC is not supported.
l 1 SCC is supported.

ACC

l 0 ACC (Access Controls Coordinator) is not supported.
l 1 ACC (Access Controls Coordinator) is supported.

TPGS

l 0 Asymmetric logical unit access is not supported.
l 1 Implicit asymmetric logical unit access is supported.
l 2 Explicit asymmetric logical unit access is supported.
l 3 Both Implicit and Explicit are supported.

3PC

l 0 3PC (Third-Party Copy) function is not supported
l 1 3PC (Third-Party Copy) function is supported

PROTECT

l 0 protection feature is not supported
l 1 protection function is supported

ENCSERV

l 0 Enclosure Services feature is not supported.
l 1 Enclosure Services feature is supported

MULTIP

l 0 Multi Port function is not supported.
l 1 Multi Port function is supported.

UAC USB Peripheral Module Guide www.fortra.com page: 38

Overview USB Mass Storage Class / Inquiry command

CmdQue

l 0 Command queuing is not supported.
l 1 Command queuing is supported.

Vendor information

Manufacturer information/ASCII code string

Product identification

Product Information/ASCII Code String

Product revision level

Version information/ASCII code string

UAC USB Peripheral Module Guide www.fortra.com page: 39

Sample for Mass Storage / System overview

Sample for Mass Storage
The USB Peripheral Module provides XML and CSV fuzzing samples for mass storage of the
USB host. This section describes the fuzzing of mass storage using them.

System overview
The basic configuration of the mass storage fuzzing system is shown below:

Using the USB Peripheral Module (best_uac_usbd.dll) described in the Overview of UAC
USB Peripheral Module chapter, we have prepared XML and CSV files for sending mass
storage device data. These can be used to check fuzzing behavior against mass storage
hosts.

Content for mass storage class fuzzing
The following figure shows the content of fuzzing (usually assumed sequence) and the
insertion point of fuzzing data in the sample.

UAC USB Peripheral Module Guide www.fortra.com page: 40

Sample for Mass Storage / Content for mass storage class fuzzing

UAC USB Peripheral Module Guide www.fortra.com page: 41

Sample for Mass Storage / Content for mass storage class fuzzing

Response data and CSW includes fuzzing data created by beSTORM. Wait for the next
command.

l Usually, the USB mass storage host issues an Inquiry command first to learn
about the device's characteristics.

l Fuzzing is performed on the response data and status response data (CSW) of
the command (red part in the above figure).

l After responding to the data, it waits for the next command (to stop here if the
host is defective and not able to respond).

l Then, the USB is disconnected by beSTORM (USB peripheral), reconnected, and
the test is repeated.

l It returns 1 back to Get Max Lun as an auto-response.

XML
The XML for this fuzzing is shown below:

<?xml version="1.0" ?>
<!DOCTYPE beSTORM SYSTEM '\Program Files\beSTORM\beSTORM.dtd'>
<beSTORM Revision="$Revision: 7298 $" Version="1.2">
<Global/>
<GeneratorOptSettings>
<BT FactoryDefined="1" FactoryType="Binary"/>
</GeneratorOptSettings>
<ModuleSettings>
<M Name="UAC USB peripheral1">
<P Name="UAC USB peripheral1 protocol">
<SC Name="Initialize">
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_start SC"
Procedure="UAC_usb_start">
<S Name="COM_PORT" ParamName="COM_PORT">
<EV ASCIIValue="4" Description="COM" Name="COM" Required="1"/>
</S>
<S Name="CSV_FILE" ParamName="CSV_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.csv" Description="CSV_ATH"
Name="CSV_ATH" Required="1"/>
</S>
<S Name="LOG_FILE" ParamName="LOG_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.log" Description="LOG_PATH"
Name="LOG_PATH" Required="1"/>
</S>
<S Name="RECORD_FILE" ParamName="RECORD_FILE">
<EV ASCIIValue="c:\TEMP\best_record.dat" Description="RECORD_

UAC USB Peripheral Module Guide www.fortra.com page: 42

Sample for Mass Storage / Content for mass storage class fuzzing

PATH" Name="RECORD_PATH" Required="1"/>
</S>
<S Name="ILLEGAL_TIMER" ParamName="ILLEGAL_TIMER">
<EV ASCIIValue="3000" Description="timer" Name="timer"
Required="1"/>
</S>
<S Name="SER_ERR_RETRY_COUNT" ParamName="SER_ERR_RETRY_COUNT">
<EV ASCIIValue="3" Description="ser_err_retry_count" Name="ser_
err_retry_count" Required="1"/>
</S>
<S Name="USB_DATA_TIMEOUT" ParamName="USB_DATA_TIMEOUT">
<EV ASCIIValue="600" Description="usb_data_timeout" Name="usb_
data_timeout" Required="1"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_wait_for_
start SC" Procedure="UAC_wait_for_start"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_dev_
desc20 SC" Procedure="UAC_set_dev_desc20">
<S Name="DevDesc20" ParamName="DevDesc20">
<C Name="bLength" Value="0x12"/>
<C Name="bDescriptorType" Value="0x01"/>
<C Name="bcdUSB" Value="0x10 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="idVendor" Value="0x45 0x04"/>
<C Name="idProduct" Value="0xf1 0x00"/>
<C Name="bcdDevice" Value="0x00 0x00"/>
<C Name="iManufacturer" Value="0x01"/>
<C Name="iProduct" Value="0x02"/>
<C Name="iSerialNumber" Value="0x00"/>
<C Name="bNumConfigurations" Value="0x01"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_dev_
desc30 SC" Procedure="UAC_set_dev_desc30">
<S Name="DevDesc30" ParamName="DevDesc30">
<C Name="bLength" Value="0x12"/>
<C Name="bDescriptorType" Value="0x01"/>
<C Name="bcdUSB" Value="0x00 0x03"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x09"/>
<C Name="idVendor" Value="0x45 0x04"/>
<C Name="idProduct" Value="0xf1 0x00"/>

UAC USB Peripheral Module Guide www.fortra.com page: 43

Sample for Mass Storage / Content for mass storage class fuzzing

<C Name="bcdDevice" Value="0x00 0x00"/>
<C Name="iManufacturer" Value="0x01"/>
<C Name="iProduct" Value="0x02"/>
<C Name="iSerialNumber" Value="0x00"/>
<C Name="bNumConfigurations" Value="0x01"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_qual_desc
SC" Procedure="UAC_set_qual_desc">
<S Name="QualDesc" ParamName="QualDesc">
<C Name="bLength" Value="0x0a"/>
<C Name="bDescriptorType" Value="0x06"/>
<C Name="bcdUSB" Value="0x00 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="bNumConfigurations" Value="0x01"/>
<C Name="bReserved" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_fs_config
SC" Procedure="UAC_set_fs_config">
<S Name="FSCONFIG" ParamName="FSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x40 0x00"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x07"/>

UAC USB Peripheral Module Guide www.fortra.com page: 44

Sample for Mass Storage / Content for mass storage class fuzzing

<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x40 0x00"/>
<C Name="bInterval" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_hs_config
SC" Procedure="UAC_set_hs_config">
<S Name="HSCONFIG" ParamName="HSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x02"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x02"/>
<C Name="bInterval" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_ss_config
SC" Procedure="UAC_set_ss_config">
<S Name="SSCONFIG" ParamName="SSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>

UAC USB Peripheral Module Guide www.fortra.com page: 45

Sample for Mass Storage / Content for mass storage class fuzzing

<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_lang
SC" Procedure="UAC_set_str_lang">
<S Name="StrLang" ParamName="StrLang">
<C Name="bLength" Value="0x04"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="wLANGID" Value="0x09 0x04"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_
manufacture SC" Procedure="UAC_set_str_manufacture">
<S Name="StrManufacture" ParamName="StrManufacture">

UAC USB Peripheral Module Guide www.fortra.com page: 46

Sample for Mass Storage / Content for mass storage class fuzzing

<C Name="bLength" Value="0x10"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x43 0x00 0x79 0x00 0x70 0x00 0x72
0x00 0x65 0x00 0x73 0x00 0x73 0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_
product SC" Procedure="UAC_set_str_product">
<S Name="StrProduct" ParamName="StrProduct">
<C Name="bLength" Value="0x08"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x55, 0x00, 0x41, 0x00, 0x43, 0x00"/>
</S>
</SP>
</SC>
<SC Name="Fuzzing">
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_sequence_
start SC" Procedure="UAC_sequence_start"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_recv_outep
SC1" Procedure="UAC_recv_outep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x02"/>
</S>
<S Name="BUS_RESET" ParamName="BUS_RESET">
<C ASCIIValue="SKIP" Name="bus_reset"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_send_inep
response SC" Procedure="UAC_send_inep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x81"/>
</S>
<S Name="data" ParamName="data">
<B MaxBytes="1" MinBytes="1" Name="PeripheralQualifier"
Value="0x00"/>
<B MaxBytes="1" MinBytes="1" Name="RMB" Value="0x80"/>
<B MaxBytes="1" MinBytes="1" Name="Versions" Value="0x06"/>
<B MaxBytes="1" MinBytes="1" Name="Response Data Format"
Value="0x02"/>
<B MaxBytes="4" Name="Length" Value="0x3b"/>
<B MaxBytes="2" MinBytes="2" Name="Reserve" Value="0x00 0x00"/>
<B MaxBytes="1" MinBytes="1" Name="RelADR plus" Value="0x00"/>
<B MaxBytes="16" Name="Vendor" Value="0x30 0x31 0x32 0x33 0x34
0x35 0x36 0x37"/>
<B MaxBytes="32" Name="Product" Value="0x61 0x62 0x63 0x64 0x65
0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70"/>
<B MaxBytes="8" Name="Revision" Value="0x30 0x31 0x32 0x33"/>
</S>

UAC USB Peripheral Module Guide www.fortra.com page: 47

Sample for Mass Storage / Content for mass storage class fuzzing

</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_send_inep csw
SC" Procedure="UAC_send_inep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x81"/>
</S>
<S Name="data" ParamName="data">
<B MaxBytes="4" Name="dCSWSignature" Value="0x55 0x53 0x42
0x53"/>
<B MaxBytes="4" Name="dCSWTag" Value="0x80 0x00 0x00 0x00"/>
<B MaxBytes="4" Name="dCSWDataResidue" Value="0x00 0x00 0x00
0x00"/>
<B MaxBytes="1" Name="bCSWStatus" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_recv_outep
SC2" Procedure="UAC_recv_outep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x02"/>
</S>
<S Name="BUS_RESET" ParamName="BUS_RESET">
<C ASCIIValue="BREAK" Name="bus_reset"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_sequence_end
SC" Procedure="UAC_sequence_end"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_sleep csw
SC" Procedure="UAC_usb_sleep">
<S Name="msec" ParamName="msec">
<C ASCIIValue="2000" Name="value"/>
</S>
</SP>
</SC>
<SC Name="Deinitialize">
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_stop SC"
Procedure="UAC_usb_stop"/>
</SC>
</P>
</M>
</ModuleSettings>
</beSTORM>

l The code consists of 3 sequences (SC tags). Not only mass storage, but also
the UAC USB Peripheral Module requires such a structure to be used.

UAC USB Peripheral Module Guide www.fortra.com page: 48

Sample for Mass Storage / Content for mass storage class fuzzing

l Initialize sequence containing procedures for setting descriptor and
called only once at the beginning.

l Fuzzing sequence (that is, this part is iterated).
l Deinitialize sequence containing procedures for termination and called
only once at the end.

Initialize sequence (called only once at the beginning)

l UAC_usb_start is prepared as described in the Begin USB fuzzing protocol
(UAC_usb_start) section of the Overview of UAC USB Peripheral Module
chapter.

l Wait for connection from the SOE (EZ-USB FX3) with UAC_wait_for_start.
l Set descriptors for bulk-only USB mass storage devices, which are often used
in USB memory, by calling following functions of the DLL. Please refer to the
How to use functions section of the Overview of UAC USB Peripheral Module
chapter for the specification of each function.

l UAC_set_dev_desc20

l UAC_set_dev_desc30

l UAC_set_qual_desc

l UAC_set_fs_config

l UAC_set_hs_config

l UAC_set_ss_config

l UAC_set_str_lang

l UAC_set_str_manufacture

l UAC_set_str_product

Fuzzing sequence (this part will be iterated)

l Establish a USB connection with UAC_sequence_start.
l Receive data from the mass storage host with UAC_recv_outp (that is,
receive command data called CBW, in which the Inquiry command should be
found)

l Put the endpoint number in the EP. This is where the bulk OUT endpoint
number is specified. This value is supposed to be the same value set by
the descriptor.

l Send fuzzed inquiry data with UAC_send_inep.

UAC USB Peripheral Module Guide www.fortra.com page: 49

Sample for Mass Storage / Content for mass storage class fuzzing

l A B tag is used here to write XML to use the fuzzing data of beSTORM.
l Put the endpoint number in the EP. This is where the bulk IN endpoint
number is specified. This value is supposed to be the same value set by
the descriptor.

l Again, send CSW status data to the host from the peripheral side with UAC_
send_inep.

l A B tag is used here to write XML to use the fuzzing data of beSTORM.
l Put the endpoint number in the EP. This is where the bulk IN endpoint
number is specified. This value is supposed to be the same value set by
the descriptor.

l Receive data from the mass storage host with UAC_recv_outp (that is,
receive command data called CBW - It doesn't matter what the content of the
command is, as it's just a readout.).

l Disconnect the USB with UAC_sequence_end.
l Wait for 2 seconds with UAC_usb_sleep. This is to ensure the disconnection.

Deinitialize sequence (called only once at the end)

l UAC_usb_stop - to call the end process on the DLL side.

CSV
The following is a CSV that automatically responds to the Get Max LUN control
transfer.

Since the class request packet of Get Max LUN is 0xa1, 0xfe, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, it is set to automatically respond to 1 byte of
data when receiving it.

UAC USB Peripheral Module Guide www.fortra.com page: 50

USB Fuzzing Setup / Acquire the hardware

USB Fuzzing Setup
To perform USB fuzzing in beSTORM, do the following:

Acquire the hardware
Before you can fuzz with beSTORM, you will need to supply the following third-party
hardware:

l (1) CYUSB3KIT-003 EZ-USB FX3 SuperSpeed Explorer Kit (to purchase, go to the
EZ-USB FX3 SuperSpeed Explorer Kit product page
athttps://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/)

l This kit includes:
l (1) EZ-USB FX3 board
l (1) USB 3.0 A to B cable
l (4) plastic board jumpers (two jumpers will come preinstalled on the
board)

l (1) EZ-USB FX3 SuperSpeed Explorer Kit Quick Start Guide (you will use
this to identify parts of the board in later sections)

l (1) USB 2.0 A to 5-pin Micro-USB Type B cable

Install the EZ-USB FX3 board
After receiving your EZ-USB FX3 SuperSpeed Explorer Kit, do the following to install the EZ-
USB FX3 board on the beSTORM computer:

1. Download and install the Windows driver:
a. Go to the Infineon USB-Serial Software Development Kit page at

https://www.infineon.com/cms/en/design-support/tools/sdk/usb-controllers-
sdk/usb-serial-software-development-kit/.

b. Sign in or register an account on the Infineon site.

UAC USB Peripheral Module Guide www.fortra.com page: 51

https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/
https://www.infineon.com/cms/en/design-support/tools/sdk/usb-controllers-sdk/usb-serial-software-development-kit/
https://www.infineon.com/cms/en/design-support/tools/sdk/usb-controllers-sdk/usb-serial-software-development-kit/

USB Fuzzing Setup / Install the EZ-USB FX3 board

c. Under the Windows section, select the USB-Serial Windows Driver Installer link
(the driver will download as CypressDriverInstaller_1.exe).

d. Double-click CypressDriverInstaller_1.exe.
e. Once the driver installation process is complete, proceed to step 2.

2. Install the EZ-USB FX3 board on the computer:
a. Place one of the plastic jumpers included with the kit over the PMODE Jumper

(J4) pins on the board (this sets the jumper to the closed state and configures
the board for firmware flashing refer to Flash the EZ-USB FX3 board's firmware
on page 53).

b. Connect the USB 3.0 cable included with the kit to the USB 3.0 port on the
board, and then connect the other end of the USB cable to the computer.

NOTE: For the locations of the PMODE Jumper (J4) and USB 3.0 port on the
board, refer to the EZ-USB FX3 SuperSpeed Explorer Kit Quick Start Guide
included with your kit.

3. Verify your EZ-USB FX3 board is properly detected by the computer:
a. In Windows, open Device Manager.
b. Expand Universal Serial Bus controllers.
c. Verify Cypress FX3 USB Bootloader Device appears in the list.

UAC USB Peripheral Module Guide www.fortra.com page: 52

USB Fuzzing Setup / Flash the EZ-USB FX3 board's firmware

NOTE: If you do not see Cypress FX3 USB Bootloader Device in your list of
USB devices, try reinstalling the Windows driver, or contact Cypress
technical support from the Support section of the
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-
003/ web page.

You can now proceed with flashing EZ-USB FX3 board's firmware.

Flash the EZ-USB FX3 board's firmware
After installing the EZ-USB FX3 board on the beSTORM computer, do the following to flash
the board's firmware:

1. Verify .NET Framework 3.5 is selected:
a. In the Windows search box, enter Windows Features.
b. From the search results, select Turn Windows features on or off.
c. In the dialog, select .NET Framework 3.5 (includes .NET 2.0 and 3.0).

UAC USB Peripheral Module Guide www.fortra.com page: 53

https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/

USB Fuzzing Setup / Flash the EZ-USB FX3 board's firmware

d. Select OK.
2. Download and unzip the firmware file:

a. Go to the Fuzzing a USB device in beSTORM FAQ page at
https://beyondsecurity.freshdesk.com/a/solutions/articles/44002334275.

b. Download the UAC_USB_Peripheral_Module.zip file.
c. Unzip the UAC_USB_Peripheral_Module.zip file to extract the UAC_USB_

Peripheral_Module folder.

NOTE: In addition to the firmware file, this folder also includes files you will
use for fuzzing a USB device in How to fuzz a USB device with the EZ-USB
FX3 board on page 58.

3. Download the flashing tool:
a. Go to the EZ-USB FX3 SuperSpeed Explorer Kit product page

https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/.
b. Expand Development Tools, and then select DOWNLOAD -

SuperSpeedExplorerKitSetup_RevSS.exe.

UAC USB Peripheral Module Guide www.fortra.com page: 54

https://beyondsecurity.freshdesk.com/a/solutions/articles/44002334275
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/

USB Fuzzing Setup / Flash the EZ-USB FX3 board's firmware

c. Double-click SuperSpeedExplorerKitSetup_RevSS.exe.
d. During the installation process, select Typical as the Installation Type.

e. Once the installation process is complete, proceed to step 3.
4. Flash the EZ-USB FX3 board:

a. In the C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\bin
folder, double-click CyControl.exe.

UAC USB Peripheral Module Guide www.fortra.com page: 55

USB Fuzzing Setup / Flash the EZ-USB FX3 board's firmware

b. From the top menu of the USB Control Center, select Program > FX3 > I2C
EEPROM.

c. From the dialog that appears, open the UAC_USB_Peripheral_Module folder
you extracted in step 2c of Flash the EZ-USB FX3 board's firmware on page 53.

d. Select the best_uac_usbd.img firmware file, and then select Open to start
flashing the firmware.

IMPORTANT: If a dialog appears instructing you to Please reset your device to
download firmware, do not select OK. Instead, press the Reset Switch on
the EZ-USB FX3 board, and then retry step 4c. For the location of the Reset
Switch on the board, refer to the EZ-USB FX3 SuperSpeed Explorer Kit
Quick Start Guide included with your kit.

UAC USB Peripheral Module Guide www.fortra.com page: 56

USB Fuzzing Setup / Flash the EZ-USB FX3 board's firmware

e. The bottom-left corner of USB Control Center will display Programming of I2C
EEPROM in Progress while the USB Control Center is flashing the EZ-USB FX3
board. Once the flashing process is complete, the message will change to
Programming of I2C EEPROM Succeded, indicating the flashing process is
complete.

UAC USB Peripheral Module Guide www.fortra.com page: 57

USB Fuzzing Setup / How to fuzz a USB device with the EZ-USB FX3 board

f. Disconnect the USB 3.0 cable from the EZ-USB FX3 board.
g. Remove the plastic jumper from the PMODE Jumper (J4) on EZ-USB FX3 board

to set it back to the open state.

Your EZ-USB FX3 board is now ready to fuzz a USB device with beSTORM.

How to fuzz a USB device with the EZ-USB FX3 board
After installing the EZ-USB FX3 board on the beSTORM computer and then flashing its
firmware, do the following to fuzz a USB device:

1. Connect the EZ-USB FX3 board to the beSTORM computer and the target USB device:
a. Insert the USB 3.0 cable included with the EZ-USB FX3 SuperSpeed Explorer Kit

into the USB 3.0 port on the board, and then connect the other end of the cable
to the target USB device you want to fuzz.

b. Insert the USB 2.0 Micro USB cable you supplied separately from the kit into
the USB 2.0 port on the board, and then connect the other end of the cable to
the beSTORM computer.

UAC USB Peripheral Module Guide www.fortra.com page: 58

USB Fuzzing Setup / How to fuzz a USB device with the EZ-USB FX3 board

NOTE: For the locations of the USB 3.0 port and USB 2.0 port on the board,
refer to the EZ-USB FX3 SuperSpeed Explorer Kit Quick Start Guide included
with your kit.

2. Verify your EZ-USB FX3 board and the target USB device is properly detected by the
computer:

a. In Windows, open Device Manager.
b. Expand Universal Serial Bus controllers.
c. Verify USB-Serial (Dual Channel) Vendor 1 and USB-Serial (Dual

Channel) Vendor MFG appear in the list of devices.

NOTE: If you do not see USB-Serial (Dual Channel) Vendor 1 and/or USB-
Serial (Dual Channel) Vendor MFG in your list of USB devices, contact
Beyond Security Technical Support at support@beyondsecurity.com.

3. Prepare the project fuzzing files:
a. On the beSTORM computer, create the following folder: C:\TEMP.
b. Copy the best_uac_usbd.dll, bestorm.csv, and best_uac_usbd.xml

files from the UAC_USB_Peripheral_Module folder (steps 2a-2c of Flash the
EZ-USB FX3 board's firmware on page 53 into the C:\TEMP folder.

4. Create a new beSTORM project and start fuzzing:
a. Start the beSTORM client.
b. Select New Project.
c. On the Welcome page, do the following:

i. Enter a name for this project in the Project Name box.
ii. Proceed with the default values for the remaining settings.

d. Select Next.
e. On the Basic Configuration page, select Import a Custom Module from a BSM

file, and then select Import.
f. In the dialog, browse to the C:\TEMP folder, and then select the best_uac_

usbd.xml file.
g. Select Open.
h. On the Module Environment page, set COM to the correct COM port for the

board. To determine the COM port, do the following:

UAC USB Peripheral Module Guide www.fortra.com page: 59

USB Fuzzing Setup / How to fuzz a USB device with the EZ-USB FX3 board

i. In Windows, open Device Manager.
ii. Expand Ports (COM & LPT).
iii. Disconnect, and then reconnect the USB 2.0 Micro USB cable from the

computer. Make note of the (COM) number. For example, USB Serial Port
(COM4) (see image).

i. Select Next.
j. On the Test Selection page, leave the Initialize, Fuzzing, and Deinitialize check

boxes selected and select Next.
k. On the Extra Configuration page, proceed with the default values for all

settings and select Next.
l. On the Complete beSTORM wizard page, clear the Auto-start beSTORM scan

now check box to disable this option.
m. Select Finish.
n. In the Project Settings pane of the main beSTORM client window, select

Settings.
o. In the Project Settings pane of the beSTORM Settings dialog, review the

following settings for your environment:
i. LOG_PATH - The default path and file name for the project's log file is
C:\TEMP\bestorm.log. Optionally, you can change either by using
alphanumeric characters and entering a different file name (must end
with .log) and path to store the log file.

ii. RECORD_PATH - The default path and file name for the project's recovery
data file is c:\TEMP\best_record.dat. Optionally, you can change
either by using alphanumeric characters and entering a different file name

UAC USB Peripheral Module Guide www.fortra.com page: 60

USB Fuzzing Setup / How to fuzz a USB device with the EZ-USB FX3 board

(must end with .dat) and path to store the recovery data file for the
recovery tool in your environment. For more information, refer to the
Recovery Tool chapter.

iii. Proceed with the default values for the remaining settings.
p. Select Apply.
q. From the left pane on the beSTORM Settings dialog, select Monitor.
r. Under Monitor Settings, clear the Enable Batch Mode checkbox to disable this

option.
s. Select Apply.
t. Select OK.
u. In the Project Settings pane on the main beSTORM client window, select Start.

NOTE: An error message will appear if a serial port or a file cannot be
opened. If this occurs, check the settings for your environment again.

v. A dialog appears requesting you to Please reset the device. Do not select OK
until after the next step.

w. Press the Reset Switch on the EZ-USB FX3 board.

NOTE: For the location of the Reset Switch on the board, refer to the EZ-USB
FX3 SuperSpeed Explorer Kit Quick Start Guide included with your kit.

x. On the Please reset the device dialog, select OK to start fuzzing the target
USB device.

When the ScaleType is standard (Base2+/-1), it sends ~1200 fuzz data. Fuzzing may take 3
to 4 hours, depending on the environment.

When the test is run, a log file and a record file for the recovery tool are created separately
from the standard beSTORM log file.

NOTE: The fuzzing process is slow and on start it might take a minute or two to start
showing any signs progress. The window might appear as if it is not responding. This is
not a sign of the program failing. Wait until you hear the USB disconnect/reconnect
chime before attempting to interact with the Monitor's controls.

UAC USB Peripheral Module Guide www.fortra.com page: 61

Communication Protocol for the Serial Offload Engine (SOE) / Overview of SOE packet

Communication Protocol for
the Serial Offload Engine (SOE)
This chapter describes the specifications of the DLL of the UAC USB Peripheral Module and
the SOE packet, which is the communication data between the DLL of the UAC USB
Peripheral Module and the SOE (EZ-USB FX3). As described below, the log file will record
this communication exchange.

Overview of SOE packet
An SOE packet is composed of 12 bytes of header data, followed by payload data if
necessary (see below):

UAC USB Peripheral Module Guide www.fortra.com page: 62

Communication Protocol for the Serial Offload Engine (SOE) / Overview of SOE packet

l The header consists of 12 bytes (up to the Length in the figure above). This is
constant for all packets.

l The header is sometimes followed by the data. Its length is specified in Length.

Data in headers
The definition of each header is shown below. All of these data are in Little Endian:

Contents in header

Element Size Description
SYNC 32

bits
Set to 0xaaaaaaa, which indicates that it is the first data.

R 1 bit Reserved (not currently in use).

TYPE 3 bit Indicates the type of packet
l 100 used by the SOE to notify the DLL that an event has
occurred .

l 010 used for a response packet from the SOE to the DLL.
l 001 used for a request packet from the DLL to the SOE.

OP Code 28
bits

Contains a code indicating the operation of the packet.

Length 32
bits

If the header is followed by data, the length of the data is specified
here. If there is no data followed, this element should be zero.

OP codes for request/response types
OP codes used in a request from the DLL and its response are defined as follows:

OP Codes for event type

OP Code Value Description
UAC_SOE_OP_GENERAL_
PING

0x0001 Request to send back the sent data as it is (for
check).

UAC_SOE_OP_START_USB 0x0004 Activate the USB peripheral function.

UAC_SOE_OP_SET_CONN_
STATE

0x0006 Connect and Disconnect USB.

UAC_SOE_OP_STALL_PIPE 0x0007 Set the specified endpoint to STALL state.

UAC USB Peripheral Module Guide www.fortra.com page: 63

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

OP Code Value Description
UAC_SOE_OP_RESET_PIPE 0x0009 Release the STALL state of the specified

endpoint.

UAC_SOR_OP_SET_DESC 0x000a Set Descriptor.

UAC_SOE_OP_CTRL_
RESPONSE

0x000f Send control transfer response data.

UAC_SOE_OP_IN_SEND 0x1002 Send IN transfer data.

OP codes for event type
OP codes that notifies the DLL of information from the SOE is defined as follows:

OP Code Value Description
UAC_SOE_OP_START_SOE 0x0005 Notification that communication with the SOE is

now available.

UAC_SOE_OP_GENERAL_
DBGMSG

0x00ff Notification of debug messages (strings): used
for debug.

UAC_SOE_OP_SETCONFIG 0x0003 A SET_CONFIGURATION is issued by the target.

UAC_SOE_OP_CLEAR_
FEATURE

0x0008 A CLEAR_FEATURE is issued by the target.

UAC_SOE_OP_BUS_RESET 0x000b A USB bus reset is issued by the target.

UAC_SOE_OP_RECV_
ERROR

0x000c Anomaly occurs during the communication
process.

UAC_SOE_OP_CTRL_REQ_
RECV

0x000e A control transfer is received from the target.

UAC_SOE_OP_OUT_RECV 0x1001 Data is received from the target's OUT endpoint.

UAC_SOE_OP_IN_
COMPLETE

0x1003 IN transfer with the target is completed.

Specification of OP codes

UAC_SOE_OP_GENERAL_PING

UAC_SOE_OP_GENERAL_PING is used to check the communication status during
debugging, etc. When data is sent to the SOE, the same data is returned. This
communication is mainly used for debugging purposes.

UAC USB Peripheral Module Guide www.fortra.com page: 64

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_START_USB

UAC_SOE_OP_START_USB instructs the SOE to start as a USB peripheral, and when the SOE
receives this OP code, it initializes the peripheral function and creates a USB connection
with the target.

UAC USB Peripheral Module Guide www.fortra.com page: 65

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_SET_CONN_STATE

UAC_SOE_OP_SET_CONN_STATE instructs the USB connection/disconnection.

UAC_SOE_OP_STALL_PIPE

UAC_SOE_OP_STALL_PIPE specifies the STALL of the specified endpoint. If the mode is
set to 0, the STALL state is immediately released by CLEAR_FEATURE from the target; if the
mode is set to 1, the STALL state will not be released until the instruction in UAC_SOE_OP_
RESET_PIPE.

UAC USB Peripheral Module Guide www.fortra.com page: 66

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_RESET_PIPE

UAC_SOE_OP_RESET_PIPE releases the STALL state of the specified endpoint.

UAC USB Peripheral Module Guide www.fortra.com page: 67

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOR_OP_SET_DESC

UAC_SOR_OP_SET_DESC instructs the SOE to set the descriptor.

UAC USB Peripheral Module Guide www.fortra.com page: 68

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

The following descriptors can be specified in Type:

List of descriptors

Value Description
1 USB 2.0 compliant device descriptor.

UAC USB Peripheral Module Guide www.fortra.com page: 69

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

Value Description
2 USB 3.0 compliant device descriptor.

3 Device qualifier descriptor.

4 Configuration descriptor at full speed (including attached descriptors).

5 Configuration descriptor at high speed (including attached descriptors).

6 Configuration descriptor for super speed (including attached descriptors).

7 String descriptor (language ID).

8 String descriptor (manufacturer).

9 String descriptor (product).

UAC_SOE_OP_CTRL_RESPONSE

UAC_SOE_OP_CTRL_RESPONSE instructs the SOE to send the control transfer response
data (valid only for vendor requests or class requests).

UAC USB Peripheral Module Guide www.fortra.com page: 70

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_IN_SEND

UAC_SOE_OP_IN_SEND instructs the SOE to send data to the IN endpoint.

UAC USB Peripheral Module Guide www.fortra.com page: 71

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_START_SOE

Once the SOE's firmware has been booted and initialized and serial communication is
available, the SOE issues a UAC_SOE_OP_START_SOE event to the DLL. The firmware
version information will be provided here.

UAC USB Peripheral Module Guide www.fortra.com page: 72

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_GENERAL_DBGMSG

This event is used for debugging, and the SOE can put any string on the event packet of
UAC_SOE_OP_GENERAL_DBGMSG and notify the DLL. It's not supposed to be used for
normal fuzzing.

UAC_SOE_OP_SETCONFIG

Upon receiving a SET_CONFIGURATION from the target, the SOE issues a UAC_SOE_OP_
SETCONFIG event to notify the DLL.

UAC USB Peripheral Module Guide www.fortra.com page: 73

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_CLEAR_FEATURE

Upon receiving a CLEAR_FEATURE from the target, the SOE issues a UAC_SOE_OP_CLEAR_
FEATURE event to notify the DLL.

UAC_SOE_OP_BUS_RESET

When the target issues a USB bus reset (USB device reinitialization instruction) to the SOE,
the SOE issues a UAC_SOE_OP_BUS_RESET event to notify the DLL.

UAC USB Peripheral Module Guide www.fortra.com page: 74

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_RECV_ERROR

If any abnormality is detected by serial communication, the SOE issues a UAC_SOE_OP_
RECV_ERROR event to notify DLL.

The EZ-USB FX3 board's USB serial communication can result in lost serial data if there is a
conflict between the USB communication with the target or the connect/disconnect process
and the serial communication. This event type has been implemented to mitigate this issue.
The data contains the received buffer (the first 16 bytes) of the serial data, You may see the
buffer here.

UAC_SOE_OP_CTRL_REQ_RECV

UAC USB Peripheral Module Guide www.fortra.com page: 75

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

Upon receiving a control transfer (class request or vendor request) from the target, the SOE
issues a UAC_SOE_OP_CTRL_REQ_RECV event to notify the DLL.

UAC_SOE_OP_OUT_RECV

Upon receiving the data of the OUT endpoint from the target, the SOE issues a UAC_SOE_
OP_CTRL_REQ_RECV event to notify the DLL with the data.

UAC USB Peripheral Module Guide www.fortra.com page: 76

Communication Protocol for the Serial Offload Engine (SOE) / Specification of OP codes

UAC_SOE_OP_IN_COMPLETE

Upon detecting that the ACK is returned from the target and the communication is
completed after the IN transfer, the SOE issues an UAC_SOE_OP_IN_COMPLETE event to
the DLL.

UAC USB Peripheral Module Guide www.fortra.com page: 77

Logging / Overview

Logging
Overview

l The USB Peripheral Module creates its own log file when fuzzing, which is separate
from beSTORM.

l The log file is output to the specified path of LOG_FILE (LOG_PATH from beSTORM
GUI setting page) described in the Begin USB fuzzing protocol (UAC_usb_start)
section of the Overview of UAC USB Peripheral Module.

l The log file consists of the following:
l A message stating that each DLL function described in How to use functions
section of the Overview of UAC USB Peripheral Module chapter is called.

l The contents of the data sent and received for the SOE packets described in
the Communication Protocol for the Serial Offload Engine (SOE) chapter.

l Statistical information about fuzzing and other tests, provided at the end of
fuzzing.

l At the same time, it outputs the message when each DLL function is called to
Windows debug message. Therefore, you can check the execution status in real-time
with tools such as DebugView.

As shown in the figure below, the log shows which function of the DLL was called and the
content of the SOE packet. This enables you to check the communication status with the
target from the log to some extent even without a USB analyzer.

Debug message

UAC USB Peripheral Module Guide www.fortra.com page: 78

Logging / Debug message

The USB Peripheral Module outputs information about each DLL function called from
beSTORM to both the log file and Windows debug messages. This enables you to use a tool
like DebugView that allows you to check debug messages in real-time to see what's going
on with your fuzzing at hand.

DebugView is available from the following website: https://docs.microsoft.com/en-
us/sysinternals/downloads/debugview

l Unzip the downloaded ZIP file to run Dbgview.exe.
l Double-click Dbgview.exe to start DebugView as shown below.
l When performing fuzzing with beSTORM with the DebugView open, messages are
displayed as shown below, so that you can grasp the execution in real-time.

Content of Debug Message
Windows debug messages displayed in DebugView are formatted with the pre-fixed
[beSTORM], which makes it easy to identify which messages are from the USB Peripheral
Module.

The following is an excerpt of a message that are observed on DbgView:

00000049 66.22557068 [10768] [beSTORM][enter UAC_usb_sleep : 5-0]
00000050 68.22835541 [10768] [beSTORM][enter UAC_sequence_start : 5-
1]
00000051 68.33224487 [10768] [beSTORM][enter UAC_recv_outep : 5-2]
00000052 69.81584930 [10768] [beSTORM][enter UAC_send_inep : 5-3]
00000053 70.32501984 [10768] [beSTORM][enter UAC_send_inep : 5-4]
00000054 70.43362427 [10768] [beSTORM][enter UAC_recv_outep : 5-5]
00000055 70.43775177 [10768] [beSTORM][enter UAC_sequence_end : 5-6

UAC USB Peripheral Module Guide www.fortra.com page: 79

https://docs.microsoft.com/en-us/sysinternals/downloads/debugview
https://docs.microsoft.com/en-us/sysinternals/downloads/debugview

Logging / Description of the log file

]
00000056 71.13491058 [10768] [beSTORM][enter UAC_usb_sleep : 6-0]
00000057 73.13673401 [10768] [beSTORM][enter UAC_sequence_start : 6-
1]
00000058 73.34024811 [10768] [beSTORM][enter UAC_recv_outep : 6-2]
00000059 74.82383728 [10768] [beSTORM][enter UAC_send_inep : 6-3]
00000060 75.43627930 [10768] [beSTORM][enter UAC_send_inep : 6-4]
00000061 75.54264832 [10768] [beSTORM][enter UAC_recv_outep : 6-5]
00000062 76.28384399 [10768] [beSTORM][enter UAC_sequence_end : 6-6
]

The basic format of DbgView is as follows. Anything other than the "message payload" is
prepared by DbgView:

Message number Timestamp [Process number] Message payload

l The message number is assigned to a sequential number by DbgView.
l The timestamps is used to see the time. The unit is a second.
l The process number of the program is also displayed.

The format of the message payload by the UAC USB Peripheral Module is as follows:

[beSTORM][enter DLL function name:number X－number Y]

l [beSTORM] is a prefix, to determine if the message is sent from beSTORM or not.
l The function name is displayed on order to see which function in the DLL is currently
being called.

l The number X indicates the number of fuzzing data being processed.
l The number 10000 represents the processing of the Initialize sequence.
l The number 20000s represents the processing of a fuzzing sequence.
l The number 30000 represents the processing of the deinitialize sequence.

l The above numbers are counted up every time a UAC_sequence_end is
processed. This enables you to see which fuzzing data is being
processed.

l The number Y is counted up every time a DLL function is called. This will be reset
when processing a UAC_sequence_end. This enables you to see which function is
being called in the sequence.

Description of the log file
The log file contains the following information:

UAC USB Peripheral Module Guide www.fortra.com page: 80

Logging / Description of the log file

l Information about called DLL functions as described in Debug message on page 78.
l Contents of SOE packets described in the Communication Protocol for the Serial
Offload Engine (SOE) chapter.

l Statistics about fuzzing and other tests (at the end of the log).
l Other supplementary messages from DLLs.

The following is an excerpt from the actual log as an example:

[2019/08/22 20:51:12.0028][beSTORM][enter UAC_usb_sleep : 259-0]
[2019/08/22 20:51:14.0029][beSTORM][enter UAC_sequence_start : 259-1
]
[2019/08/22 20:51:14.0029]UAC_USBD_SequenceStart
[2019/08/22 20:51:14.0029]#--->UAC_SOE_OP_SET_CONN_STATE len 4
[2019/08/22 20:51:14.0029] 0x01 0x00 0x00 0x00
[2019/08/22 20:51:14.0029] * CONNECT
[2019/08/22 20:51:14.0136]#<--UAC_SOE_OP_SET_CONN_STATE len=8
[2019/08/22 20:51:14.0136] 00 00 00 00 01 00 00 00
[2019/08/22 20:51:14.0136] * SUCCESS
[2019/08/22 20:51:14.0136] * CONNECT
[2019/08/22 20:51:14.0137][beSTORM][enter UAC_recv_outep : 259-2]
[2019/08/22 20:51:14.0866]#<--UAC_SOE_OP_BUS_RESET len=0
[2019/08/22 20:51:15.0114]#<--UAC_SOE_OP_SETCONFIG len=4
[2019/08/22 20:51:15.0114] 00 00 00 00
[2019/08/22 20:51:15.0114] * ConfigValue:0x0
[2019/08/22 20:51:15.0356]#<--UAC_SOE_OP_CTRL_REQ_RECV len=8
[2019/08/22 20:51:15.0356] a1 fe 00 00 00 00 01 00
[2019/08/22 20:51:15.0356]#--->UAC_SOE_OP_CTRL_RESPONSE len 1
[2019/08/22 20:51:15.0356] 0x01
[2019/08/22 20:51:15.0372]#<--UAC_SOE_OP_CTRL_RESPONSE len=4
[2019/08/22 20:51:15.0372] 00 00 00 00
[2019/08/22 20:51:15.0372] * SUCCESS
[2019/08/22 20:51:15.0376]#<--UAC_SOE_OP_OUT_RECV len=35
[2019/08/22 20:51:15.0376] 02 00 00 00 55 53 42 43 40 4b de 5b 24
00 00 00 80 00 06 12 00 00 00 24 00 00 00 00 00 00 00 0000 00 00
[2019/08/22 20:51:15.0377] * Endpoint:0x02
[2019/08/22 20:51:15.0377] * length=31
[2019/08/22 20:51:15.0378][beSTORM][enter UAC_send_inep : 259-3]
[2019/08/22 20:51:15.0378]#--->UAC_SOE_OP_IN_SEND len 40
[2019/08/22 20:51:15.0378] 0x81 0x00 0x00 0x00 0x00 0x80 0x06 0x02
0x3b 0x00 0x00 0x00 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x61
0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6a 0x6b 0x6c 0x6d 0x6e
0x6f 0x70 0x30 0x31 0x32 0x33
[2019/08/22 20:51:15.0378] * Endpoint:0x81
[2019/08/22 20:51:15.0379] * DataLength:36
[2019/08/22 20:51:15.0484]#<--UAC_SOE_OP_IN_SEND len=8
[2019/08/22 20:51:15.0484] 81 00 00 00 00 00 00 00
[2019/08/22 20:51:15.0484] * Endpoint:0x81

UAC USB Peripheral Module Guide www.fortra.com page: 81

Logging / Description of the log file

[2019/08/22 20:51:15.0484] * SUCCESS
[2019/08/22 20:51:15.0486]#<--UAC_SOE_OP_IN_COMPLETE len=4
[2019/08/22 20:51:15.0486] 81 00 00 00
[2019/08/22 20:51:15.0486] * Endpoint:0x81

The format of the log is as follows:

[Timestamp (date, time)] Message

Information about DLL function calls
As you can see in the above example, the information of the called DLL function is written in
the log as well as the Windows debug message. The contents are as explained in Content of
Debug Message on page 79.

Information about SOE packets
The USB Peripheral Module writes the contents of every packet sent and received by the
SOE to a log file. A line beginning with #--> means that the information of SOE packets is
sent from the DLL to the SOE. A line beginning with #<-- means that the information of SOE
packets is sent from the SOE to the DLL.

Request/response packets

The following is an example of UAC_SOE_OP_IN_SEND (sending data to the IN endpoint):

[2019/08/22 20:51:15.0487]#--->UAC_SOE_OP_IN_SEND len 17
[2019/08/22 20:51:15.0487] 0x81 0x00 0x00 0x00 0x55 0x53 0x42 0x53
0x00 0x00 0x00 0x80 0x00 0x00 0x00 0x00 0x00
[2019/08/22 20:51:15.0487] * Endpoint:0x81
[2019/08/22 20:51:15.0487] * DataLength:13
[2019/08/22 20:51:16.0091]#<--UAC_SOE_OP_IN_SEND len=8
[2019/08/22 20:51:16.0091] 81 00 00 00 00 00 00 00
[2019/08/22 20:51:16.0091] * Endpoint:0x81
[2019/08/22 20:51:16.0091] * SUCCESS

l The OP Code of each SOE packet is shown after #--> or #<--, followed by the len
and the value of the Length of the SOE header.

l Below the OP code line, the substantial data is shown in a binary dump.
l Supplementary information is also provided. In the above example, the content of the
Endpoint number and Status are displayed.

UAC USB Peripheral Module Guide www.fortra.com page: 82

Logging / Description of the log file

l In the above example, this means that "it made an endpoint send request to 0x81
with 14 bytes of data and got a successful response back".

Event

The following is an example of the UAC_SOE_OP_OUT_RECV (data transmission to the IN
endpoint):

[2019/08/22 16:41:10.0689]#<--UAC_SOE_OP_OUT_RECV len=35
[2019/08/22 16:41:10.0689] 02 00 00 00 55 53 42 43 40 bb 7c 5c 24
00 00 00 80 00 06 12 00 00 00 24 00 00 00 00 00 00 00 00 00 00 00
[2019/08/22 16:41:10.0689] * Endpoint:0x02
[2019/08/22 16:41:10.0689] * length=31

l You may read the logs in the same way as Request/Response packets.
l In the above example, this means "it received 31 bytes of data from endpoint 02".

Please refer to the Communication Protocol for the Serial Offload Engine (SOE) chapter for
details of each SOE packet.

The following event information is issued in conjunction with a USB system event (that is,
interrupt) within the SOE (EZ-USB FX3):

l UAC_SOE_OP_SETCONFIG

l UAC_SOE_OP_BUS_RESET

l UAC_SOE_OP_CTRL_REQ_RECV

l UAC_SOE_OP_OUT_RECV

l UAC_SOE_OP_IN_COMPLETE

Therefore, it can happen that the order of the events or communications are reversed when
they occur almost simultaneously with other events or communications (for example, UAC_
SOE_OP_OP_BUS_RESET is followed by UAC_SOE_OP_IN_COMPLETE).

Statistics
The USB Peripheral Module adds statistics as shown below at the end of log.

[2019/11/05 23:34:52.0039]--

[2019/11/05 23:34:52.0039] [INFO]Number of test = 1197
[2019/11/05 23:34:52.0039] [INFO]Number of OUT Transaction = 2205
[2019/11/05 23:34:52.0039] [INFO]Number of IN Transaction = 2394
[2019/11/05 23:34:52.0039] [INFO]Number of retry packet = 6
[2019/11/05 23:34:52.0039] [INFO]Number of BUS RESET = 1196

UAC USB Peripheral Module Guide www.fortra.com page: 83

Logging / Description of the log file

[2019/11/05 23:34:52.0039] [WARN]Number of USB data Timeout = 0
[2019/11/05 23:34:52.0039] [WARN]Number of BUS RESET = 1
[2019/11/05 23:34:52.0039] [ERR]Number of RECV ERROR = 0
[2019/11/05 23:34:52.0039]--

l Each item is categorized into three types: [INFO], [WARN] and [ERR].
l [INFO] is not a problem in terms of execution, but it is provided as information.
l [WARN] is an item related to unexpected behavior. However, since it does not
interfere with fuzzing, there is no problem as long as there are no abnormalities
in the equipment.

l [ERR] item indicates a situation that makes it difficult to continue fuzzing.
l [INFO]Number of test represents the number of fuzzed data processed (counted in
the number of times UAC_sequence_start is called).

l [INFO]Number of OUT Transaction represents the number of times data has been
received from the OUT endpoint.

l [INFO]Number of IN Transaction represents the number of times the data transfer to
the IN endpoint has been completed.

l [INFO]Number of BUS RESET represents the total number of unexpected bus resets.
However, bus resets that do not interfere with the test, such as those that occur
during the disconnection process after sending fuzz data, are counted here.

l [WARN]Number of USB data Timeout represents the number of times the transfer is
not completed within the time set in USB_DATA_TIMEOUT in the Begin USB fuzzing
protocol (UAC_usb_start) section of the Overview of UAC USB Peripheral Module
chapter. Incomplete transfers are exceptional and it depends on the specification of
the target (USB host) whether it will be a problem or not. If the target (USB host) is
Windows, this phenomenon will not occur (bus reset will be issued).

l [WARN]Number of BUS RESET represents the number of bus resets that occurred
during the IN transfer. This is an unexpected behavior, but it doesn't interfere with
fuzzing. If you are able to issue a bus reset for an unusual situation/data, it will not
be a problem.

l [ERR]Number of RECV ERROR counts the number of failed serial communication
retries. Therefore, if this value is non-zero, it means that the fuzzing failed.

In the case of fuzzing, the test is generally considered as OK if the target does not become
abnormal and data communication is normal even after the test is completed.

Others

UAC USB Peripheral Module Guide www.fortra.com page: 84

Logging / Description of the log file

In addition to the SOE packets, the USB Peripheral Module logs supplementary information
as needed. Here are a few examples:

Retry serial error

[2019/11/06 15:15:14.0494][beSTORM][enter UAC_recv_outep : 1113-2]
[2019/11/06 15:15:14.0694]#<--UAC_SOE_OP_BUS_RESET len=0
[2019/11/06 15:15:14.0895]#<--UAC_SOE_OP_SETCONFIG len=4
[2019/11/06 15:15:14.0895] 00 00 00 00 :
[2019/11/06 15:15:14.0895] * ConfigValue:0x0
[2019/11/06 15:15:15.0295]#<--UAC_SOE_OP_CTRL_REQ_RECV len=8
[2019/11/06 15:15:15.0295] a1 fe 00 00 00 00 01 00 :
[2019/11/06 15:15:15.0295]#--->UAC_SOE_OP_CTRL_RESPONSE len 1
[2019/11/06 15:15:15.0295] 0x00 :
[2019/11/06 15:15:17.0096]#<--UAC_SOE_OP_RECV_ERROR len=16
[2019/11/06 15:15:17.0096] aa aa aa aa 06 00 00 10 04 00 00 00 01
00 00 00 :
[2019/11/06 15:15:17.0096]Retry latest sent packet.
[2019/11/06 15:15:17.0096]#--->UAC_SOE_OP_CTRL_RESPONSE len 1
[2019/11/06 15:15:17.0096] 0x00 :
[2019/11/06 15:15:17.0297]#<--UAC_SOE_OP_CTRL_RESPONSE len=4
[2019/11/06 15:15:17.0297] 00 00 00 00 :
[2019/11/06 15:15:17.0297] * SUCCESS

When a retry is performed, the message is recorded as shown in red above.

Bus reset during IN transfer

[2019/11/06 12:43:33.0023][beSTORM][enter UAC_send_inep : 2-4]
[2019/11/06 12:43:33.0023]#--->UAC_SOE_OP_IN_SEND len 17
[2019/11/06 12:43:33.0023] 0x81 0x00 0x00 0x00 0x55 0x53 0x42 0x53
0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x41 :
[2019/11/06 12:43:33.0023] * Endpoint:0x81
[2019/11/06 12:43:33.0023] * DataLength:13
[2019/11/06 12:43:42.0224]#<--UAC_SOE_OP_IN_SEND len=8
[2019/11/06 12:43:42.0224] 81 00 00 00 00 00 00 00 :
[2019/11/06 12:43:42.0224] * Endpoint:0x81 [2019/11/06
12:43:42.0224] * SUCCESS
[2019/11/06 12:43:42.0424]#<--UAC_SOE_OP_BUS_RESET len=0
[2019/11/06 12:43:42.0424][WARN]You may check this UAC_SOE_OP_BUS_
RESET.
[2019/11/06 12:43:42.0424]USB Error in transmit with SOE.
[2019/11/06 12:43:42.0425][beSTORM][enter UAC_recv_outep : 2-5]
[2019/11/06 12:43:42.0425]UAC_recv_outep: SKIP this sequence because
illegal status.
[2019/11/06 12:43:42.0425][beSTORM][enter UAC_sequence_end : 2-6]
[2019/11/06 12:43:42.0425]#--->UAC_SOE_OP_SET_CONN_STATE len 4

UAC USB Peripheral Module Guide www.fortra.com page: 85

Logging / Description of the log file

[2019/11/06 12:43:42.0425] 0x00 0x00 0x00 0x00 :
[2019/11/06 12:43:42.0425] * DISCONNECT

When IN transfer fails (that is, the USB host refuses to accept data, which is considered as
compliant to the protocol), the message [WARN]You may check this UAC_SOE_OP_
BUS_RESET is recorded as shown in red above.

Data transfer time out

[2019/11/06 12:43:33.0023][beSTORM][enter UAC_send_inep : 2-4]
[2019/11/06 12:43:33.0023]#--->UAC_SOE_OP_IN_SEND len 17
[2019/11/06 12:43:33.0023] 0x81 0x00 0x00 0x00 0x55 0x53 0x42 0x53
0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x41 :
[2019/11/06 12:43:33.0023] * Endpoint:0x81
[2019/11/06 12:43:33.0023] * DataLength:13
[2019/11/06 12:43:42.0224]#<--UAC_SOE_OP_IN_SEND len=8
[2019/11/06 12:43:42.0224] 81 00 00 00 00 00 00 00 :
[2019/11/06 12:43:42.0224] * Endpoint:0x81
[2019/11/06 12:43:42.0224] * SUCCESS
[2019/11/06 12:53:49.0232][WARN]Timeout of USB transmit. msec=600000

When the data transfer times out, the message [WARN]Timeout of USB transmit is
recorded as shown in red above. If the target (USB host) is Windows, this phenomenon will
not occur (bus reset will be issued).

Retry communication failure

[2019/11/06 15:15:15.0295]#--->UAC_SOE_OP_CTRL_RESPONSE len 1
[2019/11/06 15:15:15.0295] 0x00 :
[2019/11/06 15:15:17.0096]#<--UAC_SOE_OP_RECV_ERROR len=16
[2019/11/06 15:15:17.0096] aa aa aa aa 06 00 00 10 04 00 00 00 01
00 00 00 :
[2019/11/06 15:15:17.0096] [ERR]Can't retry -> error occured

If the number of retries specified by SER_ERR_RETRY_COUNT in “” fails, the message
[ERR]Can't retry -> error occured is recorded as shown in red above.

UAC USB Peripheral Module Guide www.fortra.com page: 86

Recovery Tool / Installing Python 3 (32-bit variant)

Recovery Tool
By using the recovery tool, you can manage the fuzzing done in beSTORM individually and
retest it if necessary.

l You must run the recovery tool in the same environment as beSTORM.
l Python 3 (32-bit variant) is required.
l It uses the same DLL as beSTORM, so you may not use the recovery tool and
beSTORM at the time.

Installing Python 3 (32-bit variant)
beSTORM is a 32-bit application, so a 32-bit variant of Python 3 is required. This section
describes how to perform the installation without setting the path, etc. Follow the steps
below to install the software:

1. Download the latest version of the Python Windows x86 executable installer at
https://www.python.org/downloads/release/python-380/.

2. After the installer file finishes downloading, double-click on it (the file name may be
slightly different depending on the version).

3. Clear the Install launcher for all users check box, and then select Customize
installation.

4. Select Next. The Advanced Options dialog is displayed.
5. Clear the Associate files with Python (requires the py launcher) and Create

shortcuts for installed applications check boxes. Do not change the Customize
install location default location.

6. Select Install.
7. Start a command prompt and check if Python is using < installation path

>\python.

UAC USB Peripheral Module Guide www.fortra.com page: 87

https://www.python.org/downloads/release/python-380/

Recovery Tool / Overview of the recovery tool

You can exit from Pyhthon by pressing CTRL-Z ENTER. The figure below shows an
example of the installation on c:\Python38-32. The rest of this document is
written as assuming this path. If you install it in a different location, please replace
the path location by yours. The following instructions are executed on the command
prompt.

8. Update the Python package controller (pip) with the following command:

"c:\Python38-32\pyton” -m pip install --upgrade pip

9. Install packages for the recovery tool

“c:\Python38-32\pyton” -m pip install hexdump

Overview of the recovery tool
The recovery tool consists of Python scripts, DLLs and batch files in the best_
dataplayer folder.

The USB Peripheral Module (DLL) can perform analysis and re-fuzzing using the record data
(file specified by LOG_FILE) and log (file specified by RECORD_FILE) created by the USB
Peripheral Module (DLL).

The USB Peripheral Module (DLL) creates record data (the file specified by LOG_FILE)
separately from the log at the time of fuzzing. This is a record of the actual fuzzing data.
The recovery tool can use this data to perform fuzzing again.

The recovery tool uses the settings made in beSTORM as they are and re-fuzzes them using
the same DLL as beSTORM. Therefore, the record data (the file specified by LOG_FILE) and
the log (the file specified by RECORD_FILE) may be overwritten, so make a backup if
necessary.

Please note that Timed is not supported as a limitation.

List of commands
The recovery tool can be executed from the command prompt. The following is a list of
commands.

“c:\Python38-32\pyton” usbd_player.py init < project name> < RECORD_
FILE path > < path to the dll> < LOG_FILE path >

Creates a project for the recovery tool (the above example breaks one long line into two for
better typesetting, type them without breaking lines).

UAC USB Peripheral Module Guide www.fortra.com page: 88

Recovery Tool / Instruction

"c:\Python38-32\pyton” usbd_player.py load < project name >

Loads a project previously created with the recovery tool for reuse.

"c:\Python38-32\pyton” usbd_player.py delete < project name >

Deletes a project previously created with the recovery tool.

"c:\Python38-32\pyton” usbd_player.py parse < path to CSV output >

Analyzes the fuzzing content from log and record data and generates a CSV file. At the
same time, it also creates a list of sequences that have failed to communicate.

"c:\Python38-32\pyton” usbd_player.py playseq < all or numbers like
20001, 2002 >

If "all" is specified, all packets that failed to communicate will be fuzzed again. Or you can
specify a sequence number to be fuzzed.

Instruction
The recovery tool is provided by firmware/best_uac_usbd.img in the release file. Copy
this folder to any location, open a command prompt and move the working directory to that
folder.

Initializing/creating a project
Use the init command in List of commands on page 88 to initialize the program. Because
there are many arguments, it can be done by using the batch file usbd_init.bat. The
contents of usbd_init.bat are shown below.

@echo off

rem Don’t use a space in the following configuration (Write not set
xxx = yyy, but set xxx=yyy) rem Specify the path to pyhon.exe

rem Specify the path to pyhon.exe
set pythonPath="c:\Python38-32\python.exe"

rem Specify the project name
set projectName=msc_test1

UAC USB Peripheral Module Guide www.fortra.com page: 89

Recovery Tool / Instruction

rem Specify the path to the record file
set recordFile="C:\TEMP\best_record.dat"

rem Specify the pass to the DLL
set dll="C:\TEMP\best_uac_usbd.dll"

rem Specify the file name of the log file created by best_uac_
usbd.dll
set log="C:\TEMP\bestorm.log"

@echo on

%pythonPath% usbd_player.py init %projectName% %recordFile% %dll%
%log%

The above pythonPath, projectName, recordFile, dll, and log should be
customized for your environment. The initialization is completed by running usbd_
init.bat from the command prompt.

Once the initialization is complete, the recorder will generate project files from project name
.bs1 to project name .bs4. Based on these files, parse and playseq operations are
performed. Make a backup of these files if necessary. The recorder stores the name of this
project in the file: best_player.ini. So you can use this project to parse and playseq
until the changes are made.

The contents of each project file are as follows.

l < project name >.bs1 - Same as the contents of the recorder file
l < project name >.bs2 - The pass to the DLL
l < project name >.bs3 - Same as the log created by the DLL
l < project name >.bs4 - List that recovery tool creates (list of data to be
recovered)

The actual list is created by the operation of Analyzing fuzzing on page 91.

Removing a project
To destroy a project file, run the following:

"c:\Python38-32\pyton” usbd_player.py delete < project name >

Please note that the file will be deleted.

UAC USB Peripheral Module Guide www.fortra.com page: 90

Recovery Tool / Instruction

Loading a project
To load a project, run the following.

"c:\Python38-32\pyton” usbd_player.py load < project name >

It will not work properly if any file from project name .bs1 to project name .bs4 does not
exist. Once loaded, the recorder records the project name in the file: best_player.ini.
So you can use this project to parse and playseq until the changes are made.

Analyzing fuzzing
To analyze fuzzing with the recovery tool, run the following

"c:\Python38-32\pyton” usbd_player.py parse < path to CSV output >

It creates a CSV file with the specified name. In it, the following data is listed:

Column Description
SEQ The sequence number, which you can use to re-fuzz with the play

command.

Result When two UAC_SOE_OP_IN_COMPLETE of the following IN data are
present, it outputs "Success."

Log Location If you want to see this data in the log, please search for it in the text
provided here.

OUT Size The size of the CBW (Inquiry command) received.

OUT Data The data of CBW (Inquiry command) received.

IN Size The size of the Inquiry response sent.

IN Data The data of the Inquiry response sent.

Communication
Result

If UAC_SOE_OP_IN_COMPLETE is present, it outputs "Success."

BusReset If UAC_SOE_OP_BUS_RESET is present, it outputs "Occurred."

IN Size The size of the CSW sent.

IN Data The data of the CSW sent.

Communication
Result

If UAC_SOE_OP_IN_COMPLETE is present, it outputs "Success."

BusReset If UAC_SOE_OP_BUS_RESET is present, it outputs "Occurred."

UAC USB Peripheral Module Guide www.fortra.com page: 91

Recovery Tool / Instruction

The following figure shows an image of the data in Excel (slightly modified in Excel).

Supplementary information about sequence numbers: The sequence numbers are
determined as follows.

l 10000 The data of setting of beSTORM and USB communication of the first time
(default value).

l 20000s Processing of fuzzing data communication for and after the second time.

Replaying fuzzing
To replay fuzzing, you can use the playseq command, but note the following:

l Analyze it with parse command (you only need to do it once).
l The recovery tool and beSTORM must be in the same environment.
l beSTORM must be shutdown.
l Log files will be overwritten, so please make a backup if necessary.

To replay all failed communications, use all as follows

"c:\Python38-32\pyton” usbd_player.py playseq all

The recovery tool resends all the failed data. Specifically, it resends all data with the column
of Result in Analyzing fuzzing on page 91 is “Failure?”.

It is also possible to specify individual numbers and perform fuzzing again. Here's how to
do it when you have three data streams, 20010, 20015, and 20019.

"c:\Python38-32\pyton” usbd_player.py playseq 20010,20015,20019

NOTE: There should be no spaces in 20010,20015,20019. Otherwise, it will no longer
work properly. Also, the same number cannot be specified more than once.

UAC USB Peripheral Module Guide www.fortra.com page: 92

Recovery Tool / Instruction

The sequence number 10000 (initialization process, etc.) is always executed first in the
recovery tool, so there is no need to specify it.

Analyzing the result of replay fuzzing
You can use reparse to reanalyze the results of playseq. Because beSTORM assigns
sequence numbers in the order in which they are executed, they are different from the
sequence numbers that were assigned when the project was created.

Here's how it works:

"c:\Python38-32\pyton” usbh_player.py reparse < path to input log
data > < pass to output log data > < path to the result CSV >
"c:\Python38-32\pyton” usbh_player.py reparse up < path to input log
data > < pass to output log data > < path to the result CSV >

For example, type the following.

"c:\Python38-32\pyton” usbh_player.py reparse
\\192.168.0.23\beSTORM\bestorm_log\bestorm.log out.log out.csv

It will generate out.log and out.csv from the log at playseq on the virtual machine
(192.168.0.23). The .log and .csv formats are the same, but the sequence numbers are
changed to the numbers used in project generation.

Moreover, the test list is also updated by specifying up before the argument. Therefore, only
the data that fails in the input log data path can be replayed by the next playseq all.

UAC USB Peripheral Module Guide www.fortra.com page: 93

Customize the UAC USB Peripheral Module / Modifying mass storage sample

Customize the
UAC USB Peripheral Module
You can change the fuzzing scenario by changing the content of the XML. This section
describes how to modify the sample in the Sample for Mass Storage chapter for fuzzing.

Modifying mass storage sample
With the XML described in the XML section of the Sample for Mass Storage chapter, fuzzing
is done as shown below:

UAC USB Peripheral Module Guide www.fortra.com page: 94

Customize the UAC USB Peripheral Module / Modifying mass storage sample

In this section, we will make the following modifications to reduce the number of tests.

UAC USB Peripheral Module Guide www.fortra.com page: 95

Customize the UAC USB Peripheral Module / Modifying mass storage sample

l CSW returns a fixed value.
l Since CSW is a fixed value, the second OUT transmission/reception processing is
not performed.

The sequence is shown below:

UAC USB Peripheral Module Guide www.fortra.com page: 96

Customize the UAC USB Peripheral Module / Modifying XML

Modifying XML
Here is the XML content modified according to the previous section. The changes are
shown in red.

<?xml version="1.0" ?>
<!DOCTYPE beSTORM SYSTEM '\Program Files\beSTORM\beSTORM.dtd'>
<beSTORM Revision="$Revision: 7298 $" Version="1.2">
<Global/>
<GeneratorOptSettings>
<BT FactoryDefined="1" FactoryType="Binary"/>
</GeneratorOptSettings>
<ModuleSettings>
<M Name="UAC USB peripheral1">
<P Name="UAC USB peripheral1 protocol">
<SC Name="Initialize">
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_start SC"
Procedure="UAC_usb_start">
<S Name="COM_PORT" ParamName="COM_PORT">
<EV ASCIIValue="4" Description="COM" Name="COM" Required="1"/>
</S>
<S Name="CSV_FILE" ParamName="CSV_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.csv" Description="CSV_ATH"
Name="CSV_ATH" Required="1"/>
</S>
<S Name="LOG_FILE" ParamName="LOG_FILE">
<EV ASCIIValue="C:\TEMP\bestorm.log" Description="LOG_PATH"
Name="LOG_PATH" Required="1"/>
</S>
<S Name="RECORD_FILE" ParamName="RECORD_FILE">
<EV ASCIIValue="c:\TEMP\best_record.dat" Description="RECORD_PATH"
Name="RECORD_PATH" Required="1"/>
</S>
<S Name="ILLEGAL_TIMER" ParamName="ILLEGAL_TIMER">
<EV ASCIIValue="3000" Description="timer" Name="timer"
Required="1"/>
</S>
<S Name="SER_ERR_RETRY_COUNT" ParamName="SER_ERR_RETRY_COUNT">
<EV ASCIIValue="3" Description="ser_err_retry_count" Name="ser_err_
retry_count" Required="1"/>
</S>
<S Name="USB_DATA_TIMEOUT" ParamName="USB_DATA_TIMEOUT">
<EV ASCIIValue="600" Description="usb_data_timeout" Name="usb_data_
timeout" Required="1"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_wait_for_start SC"

UAC USB Peripheral Module Guide www.fortra.com page: 97

Customize the UAC USB Peripheral Module / Modifying XML

Procedure="UAC_wait_for_start"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_dev_desc20 SC"
Procedure="UAC_set_dev_desc20">
<S Name="DevDesc20" ParamName="DevDesc20">
<C Name="bLength" Value="0x12"/>
<C Name="bDescriptorType" Value="0x01"/>
<C Name="bcdUSB" Value="0x10 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="idVendor" Value="0x45 0x04"/>
<C Name="idProduct" Value="0xf1 0x00"/>
<C Name="bcdDevice" Value="0x00 0x00"/>
<C Name="iManufacturer" Value="0x01"/>
<C Name="iProduct" Value="0x02"/>
<C Name="iSerialNumber" Value="0x00"/>
<C Name="bNumConfigurations" Value="0x01"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_dev_desc30 SC"
Procedure="UAC_set_dev_desc30">
<S Name="DevDesc30" ParamName="DevDesc30">
<C Name="bLength" Value="0x12"/>
<C Name="bDescriptorType" Value="0x01"/>
<C Name="bcdUSB" Value="0x00 0x03"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>
<C Name="bMaxPacketSize0" Value="0x09"/>
<C Name="idVendor" Value="0x45 0x04"/>
<C Name="idProduct" Value="0xf1 0x00"/>
<C Name="bcdDevice" Value="0x00 0x00"/>
<C Name="iManufacturer" Value="0x01"/>
<C Name="iProduct" Value="0x02"/>
<C Name="iSerialNumber" Value="0x00"/>
<C Name="bNumConfigurations" Value="0x01"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_qual_desc SC"
Procedure="UAC_set_qual_desc">
<S Name="QualDesc" ParamName="QualDesc">
<C Name="bLength" Value="0x0a"/>
<C Name="bDescriptorType" Value="0x06"/>
<C Name="bcdUSB" Value="0x00 0x02"/>
<C Name="bDeviceClass" Value="0x00"/>
<C Name="bDeviceSubClass" Value="0x00"/>
<C Name="bDeviceProtocol" Value="0x00"/>

UAC USB Peripheral Module Guide www.fortra.com page: 98

Customize the UAC USB Peripheral Module / Modifying XML

<C Name="bMaxPacketSize0" Value="0x40"/>
<C Name="bNumConfigurations" Value="0x01"/>
<C Name="bReserved" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_fs_config SC"
Procedure="UAC_set_fs_config">
<S Name="FSCONFIG" ParamName="FSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x40 0x00"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x40 0x00"/>
<C Name="bInterval" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_hs_config SC"
Procedure="UAC_set_hs_config">
<S Name="HSCONFIG" ParamName="HSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>

UAC USB Peripheral Module Guide www.fortra.com page: 99

Customize the UAC USB Peripheral Module / Modifying XML

<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x02"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x02"/>
<C Name="bInterval" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_ss_config SC"
Procedure="UAC_set_ss_config">
<S Name="SSCONFIG" ParamName="SSCONFIG">
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x02"/>
<C Name="wTotalLength" Value="0x20 0x00"/>
<C Name="bNumInterface" Value="0x01"/>
<C Name="bConfigurationValue" Value="0x01"/>
<C Name="iConfiguration" Value="0x00"/>
<C Name="bmAttributes" Value="0x80"/>
<C Name="bMaxPower" Value="0x32"/>
<C Name="bLength" Value="0x09"/>
<C Name="bDescriptorType" Value="0x04"/>
<C Name="bInterfaceNumber" Value="0x00"/>
<C Name="bAlternateSetting" Value="0x00"/>
<C Name="bNumEndpoints" Value="0x02"/>
<C Name="bInterfaceClass" Value="0x08"/>
<C Name="bInterfaceSubClass" Value="0x06"/>
<C Name="bInterfaceProtocol" Value="0x50"/>
<C Name="iInterfaceProtocol" Value="0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x81"/>

UAC USB Peripheral Module Guide www.fortra.com page: 100

Customize the UAC USB Peripheral Module / Modifying XML

<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
<C Name="bLength" Value="0x07"/>
<C Name="bDescriptorType" Value="0x05"/>
<C Name="bEndpointAddress" Value="0x02"/>
<C Name="bmAttributes" Value="0x02"/>
<C Name="wMaxPacketSize" Value="0x00 0x04"/>
<C Name="bInterval" Value="0x00"/>
<C Name="bLength" Value="0x06"/>
<C Name="bDescriptorType" Value="0x30"/>
<C Name="bMaxBurst" Value="0x0f"/>
<C Name="bmAttributes" Value="0x00"/>
<C Name="wBytesPerInterval" Value="0x00 0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_lang SC"
Procedure="UAC_set_str_lang">
<S Name="StrLang" ParamName="StrLang">
<C Name="bLength" Value="0x04"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="wLANGID" Value="0x09 0x04"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_
manufacture SC" Procedure="UAC_set_str_manufacture">
<S Name="StrManufacture" ParamName="StrManufacture">
<C Name="bLength" Value="0x10"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x43 0x00 0x79 0x00 0x70 0x00 0x72 0x00
0x65 0x00 0x73 0x00 0x73 0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_set_str_product
SC" Procedure="UAC_set_str_product">
<S Name="StrProduct" ParamName="StrProduct">
<C Name="bLength" Value="0x08"/>
<C Name="bDescriptorType" Value="0x03"/>
<C Name="bString" Value="0x55, 0x00, 0x41, 0x00, 0x43, 0x00"/>
</S>
</SP>
</SC>
<SC Name="Fuzzing">

UAC USB Peripheral Module Guide www.fortra.com page: 101

Customize the UAC USB Peripheral Module / Modifying XML

<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_sequence_start SC"
Procedure="UAC_sequence_start"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_recv_outep SC1"
Procedure="UAC_recv_outep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x02"/>
</S>
<S Name="BUS_RESET" ParamName="BUS_RESET">
<C ASCIIValue="SKIP" Name="bus_reset"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_send_inep response
SC" Procedure="UAC_send_inep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x81"/>
</S>
<S Name="data" ParamName="data">
<B MaxBytes="1" MinBytes="1" Name="PeripheralQualifier"
Value="0x00"/>
<B MaxBytes="1" MinBytes="1" Name="RMB" Value="0x80"/>
<B MaxBytes="1" MinBytes="1" Name="Versions" Value="0x06"/>
<B MaxBytes="1" MinBytes="1" Name="Response Data Format"
Value="0x02"/>
<B MaxBytes="4" Name="Length" Value="0x3b"/>
<B MaxBytes="2" MinBytes="2" Name="Reserve" Value="0x00 0x00"/>
<B MaxBytes="1" MinBytes="1" Name="RelADR plus" Value="0x00"/>
<B MaxBytes="16" Name="Vendor" Value="0x30 0x31 0x32 0x33 0x34 0x35
0x36 0x37"/>
<B MaxBytes="32" Name="Product" Value="0x61 0x62 0x63 0x64 0x65 0x66
0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70"/>
<B MaxBytes="8" Name="Revision" Value="0x30 0x31 0x32 0x33"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_send_inep csw SC"
Procedure="UAC_send_inep">
<S Name="EP" ParamName="EP">
<C Name="addr" Value="0x81"/>
</S>
<S Name="data" ParamName="data">
<C Name="dCSWSignature" Value="0x55 0x53 0x42 0x53"/>
<C Name="dCSWTag" Value="0x80 0x00 0x00 0x00"/>
<C Name="dCSWDataResidue" Value="0x00 0x00 0x00 0x00"/>
<C Name="bCSWStatus" Value="0x00"/>
</S>
</SP>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_sequence_end SC"
Procedure="UAC_sequence_end"/>
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_sleep csw SC"

UAC USB Peripheral Module Guide www.fortra.com page: 102

Customize the UAC USB Peripheral Module / Modifying XML

Procedure="UAC_usb_sleep">
<S Name="msec" ParamName="msec">
<C ASCIIValue="2000" Name="value"/>
</S>
</SP>
</SC>
<SC Name="Deinitialize">
<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_usb_stop SC"
Procedure="UAC_usb_stop"/>
</SC>
</P>
</M>
</ModuleSettings>
</beSTORM>

l The data definition part of the SP tag (in the S tag) of UAC_send_inep csw SC has
been modified. As the difference is shown below, the B tag is replaced by the C tag
and set to a fixed value. You may change the role of the data by changing the tag
name likewise.

l Before changes

<S Name="data" ParamName="data">
<B MaxBytes="4" Name="dCSWSignature" Value="0x55 0x53 0x42
0x53"/>
<B MaxBytes="4" Name="dCSWTag" Value="0x80 0x00 0x00
0x00"/>
<B MaxBytes="4" Name="dCSWDataResidue" Value="0x00 0x00
0x00 0x00"/>
<B MaxBytes="1" Name="bCSWStatus" Value="0x00"/>
</S>

l After changes

<S Name="data" ParamName="data">
<C Name="dCSWSignature" Value="0x55 0x53 0x42 0x53"/>
<C Name="dCSWTag" Value="0x80 0x00 0x00 0x00"/>
<C Name="dCSWDataResidue" Value="0x00 0x00 0x00 0x00"/>
<C Name="bCSWStatus" Value="0x00"/>
</S>

l The SP tag of UAC_recv_outep SC2 has been removed. Therefore, it has been
changed not to wait for the second OUT transfer.

l Before changes

<SP Library="c:\work\best_uac_usbd.dll" Name="UAC_recv_
outep SC2" Procedure="UAC_recv_outep">
<S Name="EP" ParamName="EP">

UAC USB Peripheral Module Guide www.fortra.com page: 103

Customize the UAC USB Peripheral Module / Fuzzing with the modified XML

<C Name="addr" Value="0x02"/>
</S>
<S Name="BUS_RESET" ParamName="BUS_RESET">
<C ASCIIValue="BREAK" Name="bus_reset"/>
</S>
</SP>

l After changes
Nothing (deleted)

The following is the ModuleBrowsing screen when this XML is applied to beSTORM. The
changed state is displayed. The number of tests is also around 800.

Fuzzing with the modified XML
l When you change the XML, you need to create a new beSTORM project.
l Replace the XML and create a project following the steps in the How to fuzz a

USB device with the EZ-USB FX3 board section of the USB Fuzzing Setup chapter.
After that, you can follow the same procedure for fuzzing.

In this way, you can perform fuzzing with different specifications by rewriting the XML.

UAC USB Peripheral Module Guide www.fortra.com page: 104

Resources / Building DLL

Resources
The release files for the UAC USB Peripheral Module are attached to the UAC USB Module
Guide page on the Beyond Security portal) at
https://beyondsecurity.freshdesk.com/a/solutions/articles/44002334275 as UAC_USB_
Peripheral_Module.zip. The files with in the zip file are organized as shown below:

Basically, fuzzing is done by using beSTORM in the firmware folder and the EZ-USB FX3
firmware in the modules folder, and if necessary, recovery is done by using the best_
dataplayer folder. Customization is supposed to be done by changing the XML. Normally,
you do not need to build the source code, just use best_uac_usbd.img in the firmware
and best_uac_usbd.dll in the modules folder.

Building DLL
1. Unzip best_uac_usbd.zip.
2. Double-click best_uac_usbd.sln to start VisualStudio.
3. Set the configuration to Debug, and the platform to x86 in VisualStudio.
4. Once build is completed, best_uac_usbd.dll is created under the Debug folder.

An overview of the included source code is shown below:

List of resources

UAC USB Peripheral Module Guide www.fortra.com page: 105

https://beyondsecurity.freshdesk.com/a/solutions/articles/44002334275

Resources / Building DLL

File name Description
bestorm_dll.cpp Tool functions used in customized implementations of

beSTORM.

bestorm_dll.h DLL functions called by beSTORM.

best_uac_usbd.cpp Procedures to launching and terminating the DLL itself.

dllmain.cpp Tools for beSTORM provided by Beyond Security.

helper.cpp Header file.

helper.h Serial Communications Module.

serial_if.cpp Files automatically generated by VisualStudio (basic DLL
description).

serial_if.h Files automatically generated by VisualStudio (basic DLL
description).

stdafx.cpp Files automatically generated by VisualStudio (basic DLL
description).

stdafx.h SOE Communications Processing Module.

targetver.h Header file.

uac_bestorm_soe.cpp Analyzing and writing SOE Packets to the log.

uac_bestorm_soe.h Buffer processing for serial reception.

uac_bestorm_soe_
logger.cpp

Header file.

uac_bestorm_recv.cpp CSV file related processing of automatic response.

uac_dll_usb_soe.h Header file.

UAC_SOE_csv.cpp Overhead for each DLL process.

UAC_SOE_csv.h Header file.

UAC_SOE_dllfunc.cpp Windows Exclusion Handling.

UAC_SOE_dllfunc.h Header file.

UAC_SOE_event.cpp Log file manipulation.

UAC_SOE_event.h Header file.

UAC_SOE_LogFie.cpp USB monitor processing.

UAC_SOE_LogFie.h Header file.

UAC_SOE_monitor.cpp Reception Processing from SOE.

UAC_SOE_monitor.h Header file.

UAC USB Peripheral Module Guide www.fortra.com page: 106

Resources / Building EZ-USB FX3 Firmware

File name Description
UAC_SOE_recv.cpp Data transfer timeout management.

UAC_SOE_recv.h Header file.

UAC_SOE_transmit_
timeout.cpp

Main processing of USB Peripheral Module.

UAC_SOE_transmit_
timeout.h

Header file.

UAC_SOE_usb_manager
.cpp

Processing of recovery data writing.

UAC_SOE_usb_manager .h Header file.

UAC_BEST_
DataRecorder.cpp

Tool functions used in customized implementations of
beSTORM.

UAC_BEST_DataRecorder.h Header file.

Building EZ-USB FX3 Firmware
The FX-USB 1.3 SDK from Cypress is required to build the firmware. Go to
https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/ to download
and install the DOWNLOAD - SuperSpeedExplorerKitSetup_RevSS.exe under the
Development Tools section of the web page.

The Makefile needs to be customized accordingly. The following is an excerpt from
Makefile:

Settings
SDK_CORE_PATH = C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3
LIBC_A_PATH = "$(SDK_CORE_PATH)\ARM GCC\arm-none-eabi\lib\libc.a"
LIBGCC_A_PATH = "$(SDK_CORE_PATH)\ARM GCC\lib\gcc\arm-none-
eabi\4.8.1\libgcc.a"

IMG_TOOL_PATH = "$(SDK_CORE_PATH)\util\elf2img\elf2img.exe"
EZUSB_SDK_INCPATH = "$(SDK_CORE_PATH)\firmware\u3p_firmware\inc"
FX3_LD_PATH = "$(SDK_CORE_PATH)\firmware\common\fx3.ld"
CYFXAPI_A_PATH = "$(SDK_CORE_PATH)\firmware\u3p_firmware\lib\fx3_
debug\cyfxapi.a"
CYU3LPP_A_PATH = "$(SDK_CORE_PATH)\firmware\u3p_firmware\lib\fx3_
debug\cyu3lpp.a"
CYU3THREADX_A_PATH = "$(SDK_CORE_PATH)\firmware\u3p_
firmware\lib\fx3_debug\cyu3threadx.a"

UAC USB Peripheral Module Guide www.fortra.com page: 107

https://www.infineon.com/cms/en/product/evaluation-boards/cyusb3kit-003/

Resources / Building EZ-USB FX3 Firmware

l For the above paths, set the paths for the installed environment.
l In particular, the libgcc.a part often needs to be checked (because it contains
detailed version numbers in the path).

1. Unzip the best_ez_usb3.zip to a location of your choice.
2. Modify the Makefile.
3. Start a command prompt (DOS screen) and move the current directory to best_ez_

usb3, which was unpacked above.
4. Build the source by cs-make ENTER. When the build is finished successfully, best_

uac_usbd.img is created. This can be written to the EX-USB FX3 to be used as the
USB Peripheral Module device.

You may clear related objects with cs-make clean <enter>.

An overview of the included source code is shown below:

List of source codes

File name Description
cyfx_gcc_startup.S Start-up routine (using code from Cypress EZ-USB SDK).

cyfxbulkdscr.c Processing related to descriptors.

cyfxtx.c Tools related to EZ-USB (using code from Cypress EZ-USB SDK).

cyfx_usb_peripheral.c Descripting the USB peripheral behavior of EZ-USB.

cyfx_usb_peripheral.h Header file.

uac_bestorm_soe.c SOE communication processing module.

uac_bestorm_soe.h Header file.

uac_ezusb_lib.c EZUSB implementation dependencies (mainly endpoint settings).

uac_ezusb_lib.h Header file

uac_ezusb_ser_recv.c Buffer processing for serial reception.

uac_ezusb_ser_recv.h Header file.

UAC USB Peripheral Module Guide www.fortra.com page: 108

	beSTORM Overview
	Overview
	Test case generation
	Data origination algorithm

	Customizing beSTORM
	Overview
	Function defined by DLL
	Specification of sample DLL
	XML syntax
	Customized fuzzing (summary)

	Overview of the UAC USB Peripheral Module
	USB peripheral module architecture
	USB peripheral module functions
	How to use functions
	Auto-responding function
	Logging
	Behavior in case of abnormalities
	Limitations and constraints

	Overview USB Mass Storage Class
	Device configuration
	Data format
	Get Max LUN
	Inquiry command

	Sample for Mass Storage
	System overview
	Content for mass storage class fuzzing

	USB Fuzzing Setup
	Acquire the hardware
	Install the EZ-USB FX3 board
	Flash the EZ-USB FX3 board's firmware
	How to fuzz a USB device with the EZ-USB FX3 board

	Communication Protocol for the Serial Offload Engine (SOE)
	Overview of SOE packet
	Specification of OP codes

	Logging
	Overview
	Debug message
	Description of the log file

	Recovery Tool
	Installing Python 3 (32-bit variant)
	Overview of the recovery tool
	Instruction

	Customize the UAC USB Peripheral Module
	Modifying mass storage sample
	Modifying XML
	Fuzzing with the modified XML

	Resources
	Building DLL
	Building EZ-USB FX3 Firmware

