
beSTORM
13.1.0
Fuzzing an Imported File
Guide

Copyright Terms and Conditions

Copyright © Fortra, LLC and its group of companies. All trademarks and registered trademarks are the property of their respective
owners.

The content in this document is protected by the Copyright Laws of the United States of America and other countries worldwide.
The unauthorized use and/or duplication of this material without express and written permission from Fortra is strictly prohibited.
Excerpts and links may be used, provided that full and clear credit is given to Fortra with appropriate and specific direction to the
original content.

202306200150

Overview 1

Functions Defined by DLL 3

Specification of Sample DLL 4

Functions Defined in Sample DLL 4

XML Syntax 4

Configurations 7

Section for Sequence/Function Call 8

UAC_sample1 Function 8

UAC_sample2 Function 8

Sequence 10

Buffer Types 11

Available buffer types 11

How to specify a custom buffer type 11

How to specify a buffer type more precisely 12

Customized Fuzzing (Summary) 13

Fuzzing an Imported File Guide www.fortra.com page: iii

Table of Contents

Overview /

Overview
You can customize beSTORM for functions and communications not provided by the tool.
This section describes the basics of customization. For more information, please refer to
the beSTORM User Guide or knowledge articles.

This image displays the basic behavior of beSTORM:

The basic behavior of beSTORM is as follows:

1. beSTORM generates a project based on a scenario defined in the XML module.
2. The XML module defines how a module generates fuzzing data, what type of data it

sends, and how it looks and behaves.
3. beSTORM generates fuzzing data based on the description of the buffer data defined

in XML module.
4. Once fuzzing begins in beSTORM, it calls a DLL (library) function to output fuzzing

data to the opposite device.
5. Each function defined in the DLL generates the payload data output (in addition to

the data output, it is possible to initialize and receive data).
6. This call is iterated multiple times until all the generated fuzz data has been sent.
7. The name of the DLL file to be called and the contents of the function are described

in XML.

As for standard protocols, beSTORM maintains XML data and uses internal libraries to
communicate with it.

Fuzzing an Imported File Guide www.fortra.com page: 1

Overview /

With beSTORM's customization options, you can prepare functions and define their names
in XML for your own control. For example, for a new serial communication standard, you
can develop a function that performs the serial communication as a DLL (Win32API based)
and write XML to call the function.

Fuzzing an Imported File Guide www.fortra.com page: 2

Functions Defined by DLL /

Functions Defined by DLL
beSTORM loads the customized DLL with dynamic links and executes each function.
Therefore, it is necessary to implement a function according to the beSTORM specification
and export the function. The following is a prototype of the function to export:

extern "C" declspec(dllexport) bool FUNCTION
(int inSize, unsigned char *in, int *outSize, unsigned char
*out, Function_Modes eMode)

beSTORM calls the function using the function name defined in XML, so the name can be
set arbitrarily. Multiple settings can also be made.

The arguments consist of input data and its size (defined by beSTORM), output data and its
size (defined by DLL), and the mode of operation.

In beSTORM, input and output data are handled by packing multiple data (consisting of
names and values). Therefore, it is composed of in and out as arguments.

Mode_Preview is specified when it is called to perform analysis in order to display on
Module Browser, etc., and Mode_Execute is specified when it actually runs the test.
Therefore, the function implemented in DLL implements the actual communication when
this argument is Mode_Execute.

The return value is bool. Normally, it returns true. It returns false to notify beSTORM of
anomalies.

When you build a customized fuzzing system, you need to prepare a DLL program to
communicate with the target device, and build a program to send or receive arbitrary data if
necessary. You include the fuzzing data in this arbitrary data.

Fuzzing an Imported File Guide www.fortra.com page: 3

Specification of Sample DLL / Functions Defined in Sample DLL

Specification of Sample DLL
This section explains how to customize the functions in beSTORM with practical examples.
Here are sample specifications, assuming that the following two functions exist in the DLL
located at c:¥work\uac_sample1.dll for running fuzzing.

Functions Defined in Sample DLL
Function Name Description
UAC_sample 1 Input Data

l BIN=0x30(fixed)
l TEXT=”abcd”(fixed)

Output Data

l RET_1ST(always returns ”1234”)

UAC_sample 2 Input Data

l faz1(fuzzing data set by beSTORM)
l ret1(set the RET_1ST of uac_sample1 here)
Output Data

l None

l This example consists of setting in UAC_sample1 and fuzzing in UAC_sample2.
l It is assumed that the DLL performs fuzzing by sending data from faz1 (USB,
Ethernet, etc.). • In beSTORM, it is possible to set the return value of the previously
called function to the argument of the next function as shown in ret1 above. This is
an effective mechanism for controlling devices (such as sockets/device drivers)
using handle values.

XML Syntax

Fuzzing an Imported File Guide www.fortra.com page: 4

Specification of Sample DLL / XML Syntax

<SP Library="C:\work\uac_sample2.dll" Name="UAC_sample SC1
"Procedure="UAC_sample2"> Command to call the function
<S Name="ret1" ParamName="ret1">
<PC ConditionedName="UAC_sample1 SC1" Name="ret1" Parameter="RET_
1ST"/>
</S>
<S Name="faz1" ParamName="faz1">
<B Name="faz" Value="0x30"/>
</S>
</SP>
</SC>
</P>
</M>
</ModuleSettings>
</beSTORM>

This image shows the display of ModuleBrowser when a project is created using XML as
described in the previous section.

Fuzzing an Imported File Guide www.fortra.com page: 5

Specification of Sample DLL / XML Syntax

Fuzzing an Imported File Guide www.fortra.com page: 6

Configurations /

Configurations
l xml tag, !DOCTYPE, and beSTORM tag are specified as the settings above. (This part
does not change depending on the specification.)

l GeneratorOptSettings specifies the beSTORM default fuzzing buffer specification.
FactoryDefined="1" FactoryType="Binary" applies the beSTORM default fuzzing
buffer specification The buffer specifications are described later in "2.4.4 Buffer
Type".

l The M tag can be used to specify an arbitrary module name.
l The P tag is an arbitrary protocol name.

Fuzzing an Imported File Guide www.fortra.com page: 7

Section for Sequence/Function Call / UAC_sample1 Function

Section for Sequence/Function
Call
The SC tag is an arbitrary sequence name, and if you put SP tags after the SC tag, beSTORM
behaves as if it repeats those processes.

It is possible to describe the function call by using SP tag. I'll elaborate on each one below.

UAC_sample1 Function
<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1 SC1"
Procedure="UAC_sample1"> <S Name="BIN" ParamName="BIN">
<C Name="data" Value="0x30"/>
</S>
<S Name="TEXT" ParamName="TEXT">
<C ASCIIValue="abcd" Name="text"/>
</S>
</SP>

l The Library attribute specifies the path of the DLL to be used.
l The Name attribute will be displayed in the Module Browser, so you can enter any
character string.

l The Procedure attribute specifies the name of the function. Therefore, it needs to be
consistent with DLL implementation.

l S tag contains settings of the arguments. The Name attribute of S tag specifies the
string displayed in Module Browser. The ParamName attribute specifies the name of
the variable notified to the DLL, so you need to match it with the DLL
implementation.

l The data column to be set is listed under the S tag. As the example above uses a C
tag, it means a constant. The constant data is not used as fuzzing data, but passed
to the DLL as it is. In the above example, the data "BIN=0x30, TEXT="abcd"" is
passed to the DLL.

l Calling UAC_sample1 returns the return value of RET_1ST, which beSTORM keeps.
The data is available in XML. We actually use it in the following UAC_sample2. The
name of this return value is dependent on the DLL implementation.

UAC_sample2 Function

Fuzzing an Imported File Guide www.fortra.com page: 8

Section for Sequence/Function Call / UAC_sample2 Function

<SP Library="C:\work\uac_sample1.dll" Name="UAC_sample1 SC2"
Procedure="UAC_sample2"> <S Name="ret1" ParamName="ret1">
<PC ConditionedName="UAC_sample1 SC1" Name="ret1" Parameter="RET_
1ST"/>
</S>
<S Name="faz1" ParamName="faz1">
<B Name="faz" Value="0x30"/>
</S>
</SP>

l The Library attribute specifies the path of the DLL to be used.
l The Name attribute will be displayed in the Module Browser, so you can enter any
character string.

l The Procedure attribute specifies the name of the function. Therefore, it needs to be
consistent with DLL implementation.

l S tag contains settings of the arguments.
l By using PC tags, it is possible to use the return value of a previously called function.
In this case, ConditionName is the value of Name of SP tag of the corresponding
function, Parameter is the name of return value (this is defined in the DLL
implementation specification), and Name tag is the string to be displayed by Module
Browser.

l In the example above, the return value RET_1 ST of UAC_sample1 is specified as the
argument RET1 of the UAC_sample2 function.

l In the example above, we have the data faz1, which is specified by using the B tag
under the S tag, where B tag means the data to be fuzzed. The default value is set to
0x30. Because FAZ1 is set to fuzzing data, which is actually set to various contents
of various lengths.

l To summarize, this XML passes the two values "ret1=ret1=return value of UAC_
sample1, fuzz=fuzz data" to UAC_sample2.

Fuzzing an Imported File Guide www.fortra.com page: 9

Sequence /

Sequence

If the SC tag contains the fuzzing data, beSTORM repeats the process for the number of
fuzz data. In the case of XML described in this section, it works as shown below.

The UAC_sample1 function does not contain fuzzing data, but it is called repeatedly
because it is in the SC tag. Then, various fuzzing data are set to faz1 of the UAC_sample2
function, and it is repeated. What kind of fuzzing data is set up will be explained in the next
section.

Fuzzing an Imported File Guide www.fortra.com page: 10

Buffer Types / Available buffer types

Buffer Types
If FactoryDefined="1" and FactoryType="Binary", the beSTORM default fuzzing buffer
specification will be applied. Concretely, the following data is generated and fuzzed (the
function defined in the DLL is called for the number of generated patterns).

Available buffer types
Buffer
Type

Data to be Generated

Repeated A A, AA, AAA, ... and so on, increasing the string A up to 65535 bytes (*1).

Repeated %n Generate the string %n, %n%n, %n%n%n ... while increasing the string %n to
a maximum of 65535 bytes (*1), such as %n, %n%n%n, %n%n%n ...

Repeated
NULL

0x00, 0x00 0x00 0x00, 0x00 0x00 0x00 ... and so on, while increasing the
binary data of 0x00 up to 65535 bytes (*1).

Number
Generating

The expression range of up to 4 bytes is set as unsigned for the specified
area (0x00 to 0xffffffffff).

Repeated FF 0xff, 0xff 0xff 0xff, 0xff 0xff 0xff ... and so on, while increasing the binary
data of 0xfe up to 65535 bytes (*1).

Repeated FE 0xfe, 0xfe 0xfe 0xfe, 0xfe 0xfe 0xfe ... and so on, while increasing 0xff
binary data up to 65535 bytes (*1).

Repeated
FFFE

0xff 0xfe, 0xff 0xfe 0xfe 0xfe 0xff 0xfe, 0xff 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe ... and so on, while increasing the binary
data of 0xff 0xfe to a maximum of 32766 bytes (*1).

Repeated 0xfe 0xff, 0xfe 0xff 0xff 0xfe 0xff 0xff, 0xfe 0xff 0xff 0xfe 0xff 0xfe 0xfe

FEFF 0xff ... and so on, while increasing the binary data of 0xfe 0xff to a
maximum of 32766 bytes (*1).

l *１：Because of the relationship with other data used at the same time, a value lower
than the maximum written above may be required.

l The number of data patterns can be changed by specifying a ScaleType, which can
be changed from SETTINGS in beSTORM.

How to specify a custom buffer type
To specify your own buffer type, use the T tag below the BT tag to enumerate the buffer
type. Examples are given below (see Beyond Security's Users Guide for more information).

Fuzzing an Imported File Guide www.fortra.com page: 11

Buffer Types / How to specify a buffer type more precisely

<GeneratorOptSettings>
<T Name="Repeated A" Max="65536" ASCIIValue="A" />
<T Name="Repeated %n" Max="65536" ASCIIValue="%n" />
<T Name="Repeated NULL" Max="65536" Value="00" />
<T Name="BiggerSmaller" Max="32768" ASCIIValue="<>" />
<T Name="Repeated Space" Max="65536" ASCIIValue=" " />
</GeneratorOptSettings>

In this example, no binary fuzzing data is generated, only string repetition is performed:
BiggerSmaller repeats the <> string and Repeated Space repeats the space (ASCII code
0x20). Including them, the XML defines five different repetition patterns.

How to specify a buffer type more precisely
The data passed to the DLL can be specified in detail. The faz1 data shown so far only has a
single buffer, but it is also possible to arrange multiple data as shown below.

<S Name="faz1" ParamName="faz1">
<B MaxBytes="1" Name="TEST1" Value="0x00"/>
<C Name="TEST2" Value="0x88"/>
<B MaxBytes="1" Name="TEST3" Value="0xff"/>
<C Name="TEST4" Value="0xaa"/>
</S>

In this example, the faz1 data contains the following four data.

l Up to 1 byte of fuzzing data (default 0x00)
l Fixed value 0x88
l Up to 1 byte of fuzzing data (default 0xff)
l Fixed value 0xff

Therefore, the function in the DLL is passed as a data sequence of the form "Fuzzing data
(TEST1), 0x88, Fuzzing data (TEST2), 0xff".

If multiple fuzzing targets are defined in the same data, only one of them is actually fuzzed.
For example, in the above example, any data of "indefinite value, 0x88, 0xff, 0xaa" or "0x00,
0x88, indefinite value, 0xaa" is passed to the DLL.

You can write like this when you need to mix the fixed value and fuzzing data according to
the packet data specification of the target protocol.

Fuzzing an Imported File Guide www.fortra.com page: 12

Customized Fuzzing (Summary) /

Customized Fuzzing
(Summary)
This is a summary of what you need to do for fuzzing customization.

l Prepare the DLL that performs the relevant communication.
l Describes the XML (or modifies the provided XML) according to the DLL
specification.

l ML describes the path to the DLL to be used, the definition of fuzzing data, other
necessary settings, functions to be called, etc.

l It is also possible to change the structure of the fuzzing data by changing the
definition below the S tag.

Once the XML is created, generate the project with beSTORM, select your XML, and then
select Start to begin fuzzing.

Fuzzing an Imported File Guide www.fortra.com page: 13

	Overview
	Functions Defined by DLL
	Specification of Sample DLL
	Functions Defined in Sample DLL
	XML Syntax

	Configurations
	Section for Sequence/Function Call
	UAC_sample1 Function
	UAC_sample2 Function

	Sequence
	Buffer Types
	Available buffer types
	How to specify a custom buffer type
	How to specify a buffer type more precisely

	Customized Fuzzing (Summary)

